

2nd Adv. LIGO OSEM Concept Design Review: Interferometric OSEM.

Clive Speake and Stuart Aston, University of Birmingham.

- Simplified optical lay-out.
- Updated sensitivity measurements.
- Tilt sensitivity.
- OSEM design.

• This presentation is based on report LIGO-T040139-00-K.

Simplified optical layout

Modified Interferometer Layout

- 'In-line geometry' for ease of manufacture and setting up.
- Use crossed polarisers (P,A1) to attenuate input beam to avoid optical feedback.
- PD1 is used to monitor laser intensity to centre Lissajous figure. 25th June 2004

Updated sensitivity measurements

- Automated measurements over night have shown that the minimum displacement noise at equality of optical paths, previously reported, was largely due to cancellation of environmental noise.
- The measurements shown below could still be limited by residual environmental noise. The resolution of the 12bit ADC is ~ 3.10^{-13} mHz^{-1/2} (50kHz sampling) and shot noise is estimated to be 4.10^{-14} mHz^{-1/2} with interferometer laser power of about 1.4 μ W.

Laser diode noise spectrum

He-Ne laser noise Spectrum

Tilt sensitivity

• Tilt of target mirror, θ , causes optical path of measurement beam to extend by

 $\delta x \approx 4d\theta^2$

where *d* is the optical path length between the target mirror and the cat's eye lens.

- This leads to a reduction is fringe visibility when $\delta x \sim \lambda/2$. In the current optical bench set-up we have d=18cm which limits tilt range by +/-0.6mrad.
- In the OSEM design *d*=20mm giving +/-2mrad.

OSEM prototype design

Prototype Development Interferometer Design

• foot-print to fit 40x70mm requirement of Advanced LIGO

OSEM design

