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Range of Gravitational Radiation

hµν =
2G
c 4

Ý Ý I µν

r

• Energy density must fall off as 1/r2.
• Energy density is the square of the 

strain amplitude h.
• Amplitude falls off as 1/r. 

• Therefore, the range of a detector that 
is sensitive to a given strain h scales as 
1/h

r ~ 1
h
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Event Rate vs. Range
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• For isotropic distribution with density 
ρ, the number of sources included in 
radius r is given by

• Event rate proportional to number of 
sources included in range, or

• Small reductions in detector noise floor 
h result in big increases in number of 
sources N within detector’s range!
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What will LIGO’s range be?
• Need to know fundamental limits to h.

– Seismic
– Thermal
– Shot

• Thermal noise limits h at the lowest 
levels, determines ultimate reach of 
detector.

• Original (SRD) curve was dominated 
by suspension thermal noise, but that 
assumed viscous damping. This 
estimate has since been superseded by a 
newer understanding of thermal noise 
(structural damping).

• Newer estimates lower suspension 
thermal noise, reveal test mass noise.

• New estimates show mirror thermal 
noise dominating at lowest noise levels.
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Mirror thermal noise
• Fluctuation-dissipation theorem relates 

noise spectrum to losses.

• Structural damping loss
– Substrate thermal noise
– Coating thermal noise

• Thermoelastic damping loss 
(Braginsky noise)

– Substrate thermoelastic noise 
– Coating thermoelastic noise

Sx f( )=
kBT

π 2 f 2 Re
Ý x f( )
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Calculating mirror thermal noise
for different mechanisms

• Substrate thermoelastic noise
– Need to know mirror material’s bulk thermomechanical properties: thermal 

expansion coefficient, thermal conductivity, etc.
– Well known parameters available in the literature. Can calculate from first 

principles.
• Substrate thermal noise, structural damping

– Need to know substrate loss angle, or mirror Q (expect frequency independent)
– Have to measure. Can’t calculate from first principles, but measurement is 

(relatively) easy.
• Coating thermoelastic noise

– Need to know coating thermomechanical properties, which may differ substantially 
from those of the same materials in bulk.

– Preliminary measurements done. Estimates predict this won’t be an issue even for 
AdLIGO.

• Coating thermal noise, structural damping
– Coating loss angle (also expect frequency independent)
– Have to measure. Can’t calculate from first principles.
– This is expected to be the limiting noise source!
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Coating thermal noise:
structural damping losses

• Coating is a stack of alternating 
dielectric materials, anisotropic and 
complicated!

• Fluctuation-dissipation theorem can 
deal with this complication, but…

• Need to know losses for strains 
(distortions) in the same direction that 
the laser beam senses, perpendicular to 
the coating-substrate interface.

• Can measure losses for parallel 
distortions by measuring ringdown of 
body modes, comparing with uncoated 
mirror.

• Are they the same? Different?
• Direct measurement would be 

definitive, but we need to have a 
predictive model for designing 
AdLIGO.

φ⊥

φ||
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How to calculate coating thermal noise?

• Full theory, including coating anisotropy, different mechanical properties of 
substrate and coating:

• One approximation: Neglect Poisson’s ratio. Expect loss of accuracy of ~30%.

• Another approximation: Neglect anisotropy in coating, different parameters 
from substrate. Very simple formula, but how accurate?

Sx f( )=
2kBT
π 3 2 f

1−σ 2

wY
1
π

⎧ 
⎨ 
⎩ 

d
w

1
Y ′ Y 1− ′ σ 2( )1−σ 2( )

× ′ Y 2 1+ σ( )2 1− 2σ( )φ|| + Y ′ Y ′ σ 1+ σ( ) 1+ ′ σ ( ) 1− 2σ( ) φ|| − φ⊥( )[
+Y 2 1+ ′ σ ( )2 1− 2 ′ σ ( )φ⊥]}

Sx f( ) ≈
2kBT
π 3 2 f

1
wY

1
π

d
w

′ Y 
Y

φ|| +
Y

′ Y 
φ⊥

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Sx f( ) ≈
2kBT
π 3 2 f

1−σ 2( )
wY

2
π

d
w

1− 2σ
1−σ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ φ

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 



G040234-00-R

What is the coating loss?
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What is the coating loss?
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What is the coating loss?
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What is the coating loss?
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Thermal Noise Interferometer (TNI):
Direct Measurement of Mirror Thermal Noise

• Short arm cavities, long mode cleaner 
(frequency reference) reduce laser 
frequency noise, relative to test cavity 
length noise.

• Measurement made as relevant to 
LIGO, AdLIGO as possible.

• Want to measure thermal noise at as 
low a level as possible in a small 
interferometer.

– Low-mechanical-loss substrates: Fused 
Silica, Sapphire

– Silica-Tantala coatings
– Largest practical spot size
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TNI Calibration
• Extract length noise from error signal

• Must know each transfer function 
accurately!

• Electronic transfer function H specified 
by design, verified by direct 
measurement.

• Conversion factor C

• Discriminant D and mirror response M
each measured two different ways.

• Additional tests localize noise within 
the test cavities.

– Scaling with laser power
– Scaling with modulation depth

  
δz=

1+ DHMC
DC

δV

C =
ν
L
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TNI direct measurement of coating thermal noise
• Silica-tantala coatings on 

fused silica substrates
• Multiple calibrations 

performed.
• Noise source (in thermal noise 

band) localized inside cavities
• Assuming isotropic model, 

coating loss angle agrees with 
Penn, et al. ringdown
measurement: 

φ = 2.7 ± 0.3( )×10−4

• Assuming anisotropic model, 

φ|| = 2.7 ×10−4 ⇒ φ⊥ = 0 ± 0.6( )×10−4
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What is the coating loss?

Agrees with most recent
ringdown results.
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What does this mean for the ultimate 
astrophysical reach of LIGO-I?

• Not much that we didn’t already know. 
• Coating thermal noise does dominate at 

lowest levels, and we expect it to be 
~2x lower than the original SRD 
estimate, but…

• Substrate thermal noise is close behind! 
Change of coating phi of 4e-4 to 2.7e-4 
doesn’t change the total noise level very 
much. 

• In any case, LIGO-I’s mirrors are 
already installed. Can’t do much about 
the noise floor now.

• However…

–Figure credit: Rana Adhikari
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What does this mean for Advanced LIGO?

• Need lower-loss coatings for AdLIGO than Silica-Tantala.
• Losses in candidate coatings can be measured via ringdown method, final 

candidate verified by direct measurement in the TNI.
• Consistency between ringdown results and direct measurement validates our 

process of measuring the coating loss, development program for AdLIGO
coatings.
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Sapphire
• Noise floor in Sapphire 

dominated by Substrate 
Thermoelastic noise.

• Parameters
– α = 2.7e-6 K-1

– κ = 44 W/mK
• Numerical error in existing 

theory initially gave 
unexpected parameters

– Cerdonio, et al., Phys. 
Rev. D 63 (8), 082003 
(2001)

• Braginsky model validated 
in Sapphire - First 
measurement in AdLIGO
candidate substrate material

• But what is the coating 
thermal noise on a Sapphire 
substrate?
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Photothermal experiment:
Measuring coating thermomechanical properties

• Tabletop interferometer measures 
thermomechanical properties of mirrors 
in a Fabry-Perot cavity.

• Two cross-polarized beams at the same 
frequency resonate inside the cavity.

– One, the Pump beam, drives the 
photothermal response in the cavity

– The other, the Probe beam, measures 
the resulting length change in the cavity
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Photothermal experiment:
Interpreting the photothermal response

• Three distinct regimes:
• Low frequency - Thermal diffusion 

wavelength (penetration depth) greater 
than laser spot size, coating thickness

– In this case, the response is dominated 
by the substrate, with a characteristic 
frequency dependence.

• Medium frequency - Thermal diffusion 
wavelength smaller than laser spot size, 
but still greater than coating thickness

– Here, the response is still dominated by 
the substrate, but the frequency 
dependence is different from the low-
frequency case.

– Substrate thermal conductivity 
determines transition frequency.

• High frequency - Coating dominates
– Transition frequency gives coating 

thermal conductivity.
– High-frequency response gives coating 

thermal expansion coefficient.
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Photothermal experiment:
first results

• Silica-Tantala coating on Sapphire 
substrate

• Observe expected behavior
• Simple theory interpolating between 

asymptotic regions fits data reasonably 
well.

• Can extract thermal expansion 
coefficients, conductivities from the 
data, but…

• Theory of the photothermal response is 
not yet well enough developed to 
specify these parameters to better than 
~ factor of 2.

• Complimentary measurement:
– Ringdown measurement as a function of 

frequency, including thermoelastic loss
– Crooks, Cagnoli, Fejer, et al., Class. 

Quantum Grav. 21, S1059-S1065 
(2004)
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Conclusions

• The astrophysical reach of an interferometric gravitational wave detector 
depends strongly on its strain sensitivity. Small improvements in sensitivity 
are expected to produce big gains in event rate.

• Thermal noise is expected to limit the strain sensitivity of both LIGO and 
AdLIGO at the lowest levels, thus setting the ultimate astrophysical reach.

• Because the event rate depends so strongly on the strain sensitivity, it 
behooves us to understand, with confidence and precision, the thermal noise 
that limits the performance of our detectors.

• Coating thermal noise affects LIGO-I, but not much. It affects AdLIGO much 
more, and we need to find a better coating than we now have for that detector.

• Our process of measuring the coating loss via ringdown, then predicting the 
noise floor based on that measurement, appears to be solid.

• Our prediction for thermoelastic noise (Braginsky noise) in Sapphire substrates 
appears to be accurate.

• Our understanding of thermoelastic noise in coatings is in development.
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