

A Quad for Christmas Calum I. Torrie

1 QUADRUPLE PENDULUM SUSPENSION

- » For LASTI experiment
- » 4 stages of 22, 22, 40, 40 kg
 - with full reaction chain of 22, 22, 40, 40 kg for ETM
 - (or 22, 22, 58kg, 22kg for ITM)
- » Built by end December 2004

The following related work was done by: -

Helena Armandula, Mark Barton, Caroline Cantley, Dennis Coyne, Alastair Grant, Larry Jones, Russell Jones, Mike Plissi, Mike-Perreur-Lloyd, Norna Robertson, Janeen Romie, Ken Strain and Calum Torrie

Quad Suspension wrt concept Structure

• Mechanical stops which limit the free motion of each mass of both suspension chains must be supported by the structure.

Sufficient access must be allowed for installation of upper masses, blades and fiber/ribbon welding operations (perhaps by structure removal).

• Access for repair / replacement / adjustment of OSEMs, ECDs, ES actuators, etc. must be provided in the structural design.

12 local control OSEMs + 4 ECDs (4x4 array)

4 global control actuators

4 global control actuators

Electro-static actuation

LIGO

LIGO L.C. OSEMS and ECDs: - Plane view of both top masses

2 4x4 arraysper suspension(acting in theverticaldirection)

6 local control osems per suspension (supplied by Glasgow)

LIGO-G040095-01

LIGO II

Quad Suspension Layout wrt Structure

710 mm

LIGO

480 mm

5

Lower Layout of the ETM

Catcher wrt Structure

• The lower part of the structure must allow for (accommodate) the "catcher", or test mass fixture for installing and welding fibers.

Upper catcher wrt suspenion

Test Mass Assembly

Sapphire Al +Al

Al+S/Steel Al + S/Steel +Alum faces + Glass faces

LIGO II

Single and Double Pendulum prototypes

Single

March 2004

Single Pendulum – Helena's Ergonomic arm

LIGO

LIGO II

LIGO-G040095-01

Single and Double Pendulum prototypes

Single

March 2004

Double

April 2004

with reaction chain

May 2004

Quad Concept Structure

- The lower part must be separable from the upper part, to facilitate repair/removal of the fibers and optics.
- Features for a lifting fixture must be designed into the lower part of the structure (or interact with the catcher)

Modeling the Structures

- Frequency Analysis of the Quadruple Pendulum Structure
 REF: LIGO-T030044-03, by Dennis Coyne
- Preliminary Frequency Analysis of the HAM Structures
 - REF: LIGO-T030278-04, by CIT and SUS team
 - o Compares 3 configurations of existing MC structure o FEA in ANSYS Classic (and IDEAS and Algor)
 - Confidence in FEA approach
 - Number of stiffening concepts

Modeling the Structures

 Process used developed from work referenced on previous slide

 ANSYS Workbench

 multiple configurations of the structure (40-100kg)

 all include 60-70 kg of non-structural mass REF: LIGO-T030137

Quad wrt BSC Tank and SEI System

LIGO

LIGO Functional requirements of the structure

- The lower part must be separable from the upper part, to facilitate repair/removal of the fibers and optics. Features for a lifting fixture must be designed into the lower part (could be separate from the lower part).
- The lower part must allow for (accommodate) the "catcher", or test mass fixture for installing and welding fibers.
- Mechanical stops which limit the free motion of each mass of both suspension chains must be supported by the structure.
- Sufficient access must be allowed for installation of upper masses, blades and fiber/ribbon welding operations (perhaps by structure removal).
- Access for repair/replacement/adjustment of OSEMs, ECDs, ES actuators, etc. must be provided in the structural design.
- Access for cleaning the optic in situ must be accommodated by the structure.
- Wire routing & securing provision must be designed into the structure for all sensing and actuation, as well as for a ring heater for the thermal compensation plate (for the ITM suspensions).

Beamsplitter layout

LIGO

LIGO II

Modeling the Structures

LIGO

Upper catcher wrt suspenion

LIGO

