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The problem
• 500 kW stored in arm cavities and ~ 2 kW in power-recycling cavity
• Power absorbed in mirror substrates and coatings
• Thermal gradient in mirror, distorts refractive index of substrate and mirror curvature
• Reduce interferometer sensitivity predicted, (degraded sideband power and 

buildup in the power-recycling cavity )
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GINGIN HPTF TEST OBJECTIVES

VERIFICATION OF PREDICTED WAVEFRONT DISTORTION
Numerical modeling assumes that the thermo-elastic model** is correct
• no experimental proof
• assumes isotropic test mass rather than sapphire

** P. Hello and J-Y Vinet, J. Phys.France 51 (1990) 1267-1282

DEMONSTRATION OF HIGH POWER LASER TECHNOLOGY

DEVELOPMENT AND DEMONSTRATION OF WAVEFRONT SENSORS: 
HARTMANN WAVEFRONT SENSOR

Independent sensor of the wavefront distortion required
• must not interfere with the eigenmode of the optical cavities
• Hartmann sensor may have sufficient sensitivity and is robust.
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HPTF Test Objectives

• Measure optical distortions in ITM substrate and coatings,
validate MELODY 

Test 1: Substrate absorption as in Adv LIGO

Test 2: High Reflectivity ITM coating absorption 

Test 3: Power recycled FP with unstable recycling cavity 
at low power as in AdvL 

• Test wavefront sensors

• Test actuators for control in cavity

• Investigate control of power recycled FP cavities. 
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HPTF TEST 1: Measure wavefront distortion 
due to absorption in test mass substrate

• Use rear surface ITM. Measure degradation of finesse with increasing stored power
.

• Use Hartmann wavefront sensor to characterize distortion.
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~3W 72m

ITM

λ µ=1.064 m

Input Test Mass (ITM)
Diameter: 100mm
Thickness: 50mm
Material: Sapphire ( -axis)
flat

a

w =8.5mmo

AR coating
(<300ppm)

HR coating
(T=1500+500ppm)

Diameter: 150mm
Thickness: 80mm
Material: Sapphire ( -axis)
Radius of Curvature: 750+100m
HR coating: T<50ppm

m

<intra-cavity power~2kW>

ETM

End Test Mass (ETM)



HPTF TEST 2: Measure wavefront distortion 
due to absorption in mirror coating

• Reverse ITM

• Measure degradation of finesse with increasing stored power
• Use Hartmann wavefront sensor to characterize distortion.

~50W 72m

ITM

λ µ=1.064 m
w =8.5mmo

AR coating HR coating
(T=1500+500ppm)

<intra-cavity power~100kW>

- Use same optics, reversing ITM.
- Higher input power (~50W).
- Higher intra-cavity power (~100kW).

ETM
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HPTF test #3

Coupled cavity test:

ITMPRM ETM
72 m10m

AR HRHR HR

Recycling cavity unstable at low power as in LIGO 1, and AdL
Radii of curvature: PRM: 5.8 km, ITM: 4.0 km, ETM: 720m

Transmittances: PRM ~ 5%, ITM ~ 8%

Input power  = 100 W Ø recycling cavity power º 4 kW, arm cavity power º 200 kW

At above powers: recycling cavity stable, and same eigenmode as FP

Spot radius similar to test 1, w0  = 0.9cm

Detailed modeling in progress
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HPTF Facility

• Vacuum envelope
– 80 m long vacuum envelope for suspended cavity.

• The Laser Room
– Class 100 (better than) clean room.

• The Central lab and South-End-Station
– ~Class 1000 clean room.





Pressure
• Vacuum pumps 

running reliably, 
24/7

• Hydrocarbon 
contamination:
8e-10 mbar

• Vacuum system not 
baked

Michael Thomas and Conor Mow-Lowry



Vacuum RGA

Michael Thomas and Conor Mow-Lowry



Laser Room
• Preliminary cavity alignment with 

500mW NPRO
• PMC transmission (F=200), 85%
• Faraday Isolator(1&2), T=91%

500mW
NPRO

FI

10 MHz
modulator

pre-mode-
cleaner
(PMC)

FI
L1

L2

λ/2

λ/2

from
high
power
laser

double pass
tilt locking
of PMC

to Input Bench

periscope

PBS



Input Bench

• Mode-matching
• Cavity locking readout, 

using 10MHz 
modulation.

• Initially no auto-
alignment.



Initial Suspended Cavity
• Using BK7 optics to initial try to 

lock  the suspended cavity.

• LIGO SOS, placed on top 
of a 900mm x 600mm breadboard

• Breadboard leveled by 4 bolts, 
with no further isolation

• Replace BK7 optics by the Sapphire,
once system is running reliably.

Drawing: Tim Slade



Initial lock

• BK7 Test Masses, R~99.8% (F~500).
• Use of 500mW NPRO, ~250mW incident on 

arm cavity.
• 10MHz PM sidebands used for locking.
• Laser locked to the arm cavity.
• LIGO SOS damping onto the TM.
• Remote DC control of TM position off-set.



Laser Development for HPTF

10 W laser
Injection-locked 10 W Nd:YAG production laser for 
HPTF (and TAMA). 
Operational
See talk by D. Hosken

50 W laser
If required as backup, use first generation injection-locked, side-pumped,
side-cooled unstable resonator laser.
Would need 2-3 months to deploy. 

100 W class laser
New improved laser architecture for laser oscillator to 100W and beyond.
Designed to solve all problems of previous design
See talk by D. Mudge
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10W laser resonator

Diode 
Laser

Diode
Laser

             Max R
(60 degrees incidence)

          Output coupler 
     (10 degrees incidence)

Injection
  beam

Output

PZT

PZT

M1
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1st Generation High Power Laser
As backup 50W laser for HPTF



NEW 100 W LASER

Extension of previous approach:
• Injection locked oscillator
• Unstable Resonator
• Zig-Zag slab

•New Features:
• End pumping
• Birefringence control by defined gain medium
• Improved pump uniformity across wavefront
• Robust
• Scalable to very high power
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Composite end-pumped, side-cooled 
folded zigzag slab

Silicon Dioxide

AR 0.808 m
HR 1.064 m

µ
µ

Brewster
angled
window

Laser mode

TOP VIEW

SIDE VIEW

Glass
Undoped:YAG

Nd:YAG (0.6 at.%)

Undoped:YAG
Glass

Silicon Dioxide

Pumping
Cooling
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New 100W Laser Head
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Hartmann wavefront sensor

Large diameter HeNe  
beam

Hartmann Plate Mirror Substrate

Hartmann Rays.
Reference.
Distorted.Large diameter HeNe  

beam

Hartmann Plate Mirror Substrate

Hartmann Rays.
Reference.
Distorted.

• Distortion deflects rays from reference positions.
• Determine positions using CCD camera
• Transverse aberration of each ray is used to reconstruct the wavefront distortion.

Advantages
• Alignment much less critical than an interferometer.
• Can be configured as off-axis sensor in working interferometer.
• More sensitive than Shack-Hartmann (more precise centroid location).
• Our implementation gives absolute accuracy.

Issue
• Analysis is more complicated when sensor is rotated off the optical axis.
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ZEMAX modeling of Hartmann sensor - preliminary

Introduced wavefront distortion predicted by Hello-Vinet into numerical model that 
used ZEMAX Physical Optics Propagation computer package.
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Measured interferogams
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Measured wavefront distortion confirms predictions
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Glass test mass
• BG20 Filter glass from Schott

• Ideal for experiment, absorption (0.36% per mm) not too high (simulates constant 
flux throughout), not too low (distortion is large enough to be measurable).
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Measuring wavefront distortion using on-axis and 
off-axis Hartmann sensor.

CCD

HeNe interferometer beam

1.064 µm pump beam : 2 – 5 W

HR mirror

Glass Test Mass

Holographic plate

CCD

Hartmann plate
q

q is the angle of incidence. 
q = 0 implies on-axis measurement.
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Initial OFF-AXIS Hartmann results
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• Theoretical vs Analyzed Data optical path distortion using off-axis Hartmann.
• Off-axis distortion data undergoes complicated rotation and fit to reveal the 
“measured” distortion on-axis.
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ACIGA/LIGO High Power Test Program:  Milestones and deliverable 
Milestone By end of  FROM TO 
Isolation with wiring and local control + clean environment 01/04   
Input Optics system with fixed spacer mode cleaner (MC) to handle 10W 01/04 UWA GRF 
Sapphire test masses (order to be placed 06/02)  (fused silica dummies)  01/04 LIGO GRF 

Auto alignment system 04/04 ANU GRF 
Locked 80 m cavity with internal ITM substrate, dummy optics, SOS on 
breadboards, pumped by MISER. 

04/04 UWA, ANU, 
AU, LSC 

GRF 

10 W power photo-detection 05/04 ANU GRF 
10 W laser 05/04 AU GRF 
Locked 80 m cavity with internal ITM substrate, pumped by MISER, with auto 
alignment and AOC; SOS on Breadboards 

05/04 UWA, ANU, 
AU, LSC 

GRF 

Test 1 Completed:  Locked 80 m cavity with internal ITM substrate, pumped by 
10 W, circulating power 2.1 kW.  Results reported.  

08/04 GRF LIGO, LSC 

Test 2 installation begins: Locked 80 m cavity with external ITM substrate; 10 W 
pump. 

09/04 ACIGA GRF 

High power optical modulator and isolators delivered 09/04 UF GRF 
Mode cleaner for 100 W down select 10/04 AU  
100 W class laser installed. 10/04 AU GRF 
High power Interferometer optics & detection system installed 10/04 LSC, ACIGA GRF 
Test 2 Completed: Locked 80 m cavity with external ITM substrate, pumped by 
50 W, circulating power 100 kW.  All sensors operational. Results reported. 

02/05 GRF LSC 

Test 3 installation begins:  power recycled single FP; 100W pump 03/05 ACIGA  
New sapphire ITM + fused silica PRM (ordered 10/04) 03/05 LIGO GRF 
Test 3 Completed:  Locked PR FP cavity; 100W input; 8 kW in PRC; 400kW in 
FP; full sensing and control; cold to hot operation.  Diagnosis completed and 
report compiled. 

11/05 ACIGA LIGO, LSC. 

 
 

Hartmann  sensor + actuation (compensation plate) 04/04 AU, ANU,LSC GRF 



Conclusion
• HPTF nearing completion

• Vacuum system improving, but may need some baking

• First laser lock being set up using ‘dummy’ BK7 optics

• 10W laser to be delivered 04/04

• New high power laser design, demo delayed 

• Backup 1st generation laser to be used at Gingin if 
required to avoid delay

• Wavefront sensor progressing
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