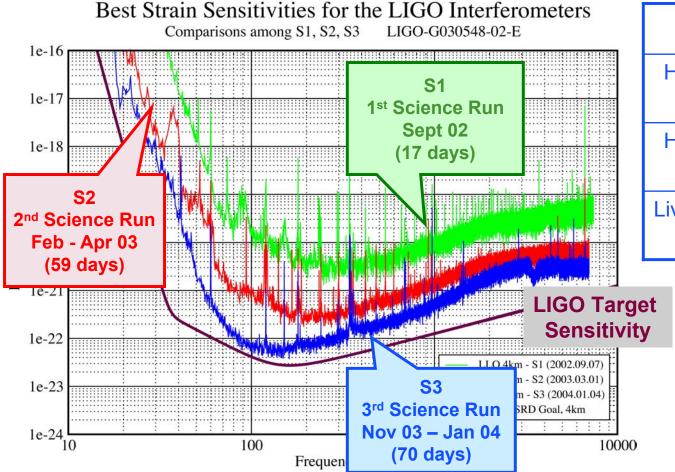


Results from the LIGO Science Runs

Stan Whitcomb

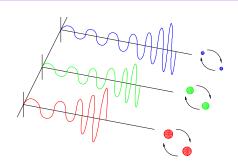
for the LIGO Scientific Collaboration


Aspen Winter Conference on

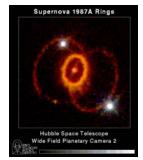
Gravitational Waves and their Detection

19 February 2004

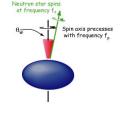
LIGO Science Runs

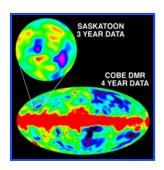

S3 Duty Cycle			
Hanford 4km	69%		
Hanford 2km	63%		
Livingston 4 km	22%*		

*Limited by high ground noise upgrade currently underway

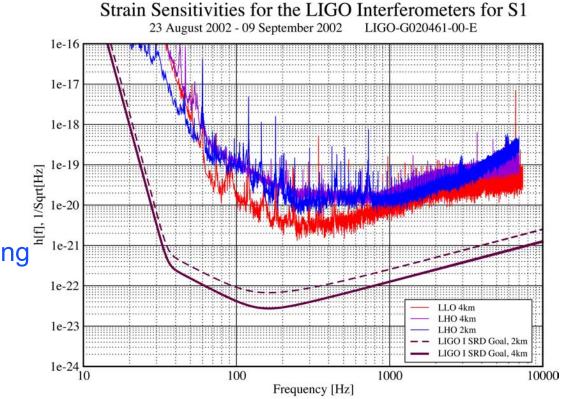

LIGO

Astrophysical Searches with LIGO Data


- Compact binary inspiral: "chirps"
 - » NS-NS waveforms are well described
 - » BH-BH need better waveforms
 - » search technique: matched templates


- Supernovae / GRBs: "bursts"
 - » burst signals in coincidence with signals in electromagnetic radiation
 - » prompt alarm (~ one hour) with neutrino detectors

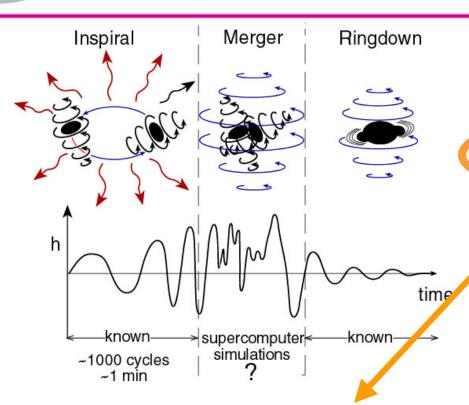
- Pulsars in our galaxy: "periodic"
 - » search for observed neutron stars (frequency, doppler shift)
 - » all sky search (computing challenge)
 - » r-modes


Cosmological Signals "stochastic background"

First Science Run (S1)

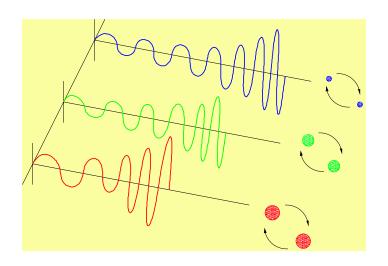
- August 23 September 9 (~400 hours)
- Three LIGO interferometers, plus GEO (Europe) and TAMA (Japan)
- Hardware reliability good for this stage in the commissioning
 - » Longest locked section for individual interferometer:21 hrs

	LLO-4K	LHO-4K	LHO-2K	3x Coinc.
Duty cycle	42%	58%	73%	24%

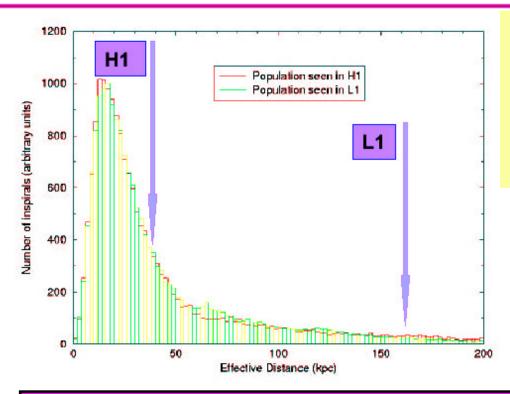

S1 Papers

Papers by the LIGO Science Collaboration (~370 authors, 40 institutions):

- "Detector Description and Performance for the First Coincident Observations between LIGO and GEO", Nucl. Inst. Meth A, 517, 154-179 (2004)
- "Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors" grqc/0308050, accepted for publication in PRD
- "Analysis of LIGO data for gravitational waves from binary neutron stars", gr-qc/0308069, being reviewed by PRD
- "First upper limits from LIGO on gravitational wave bursts", gr-qc/0312056, accepted for publication in PRD
- "Analysis of First LIGO Science Data for Stochastic Gravitational Waves", gr-qc/0312088, being reviewed by PRD



Compact Binary Coalescence


- Discrete set of templates labeled by (m1, m2)
 - » 1.0 Msun < m1, m2 < 3.0 Msun</p>
 - » ~ 2000 templates
 - » At most 3% loss in SNR

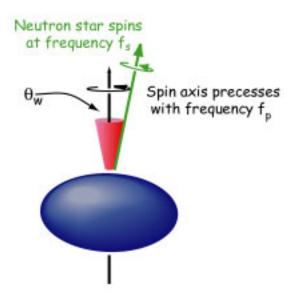
- » Search: <u>matched templates</u>
- Neutron Star Neutron Star
 - waveforms are well described
- » Black Hole Black Hole
 - need better waveforms

Results of S1 Inspiral Search

Simulated Galactic Population

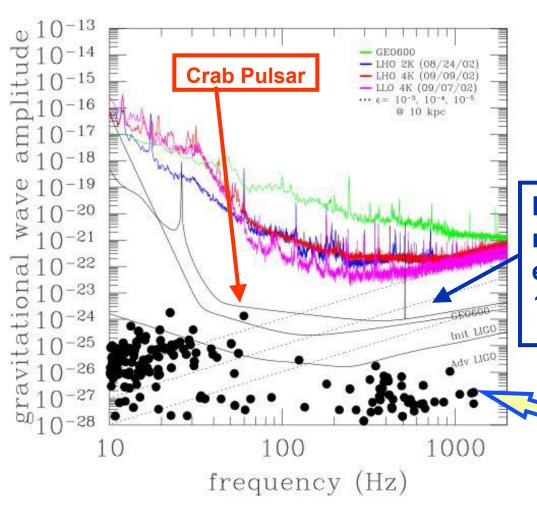
- Population includes Milky Way, I MC and SMC
- LMC and SMC contribute~12% of Milky Way

LIGO S1 Upper Limit R < 170 / yr / MWEG


Best guess: Initial LIGO Rate = 1 per (5-250) years

Detectable Range for S2/S3 data includes Andromeda!

Periodic Sources


- Pulsars in our galaxy:
 - » search for observed neutron stars
 - » all sky search (computing challenge)
 - » r-modes

- Frequency modulation of signal due to Earth's motion
- Amplitude modulation due to the detector's antenna pattern.

Directed Search in S1

NO DETECTION EXPECTED

at present sensitivities

Predicted signal for rotating neutron star with equatorial ellipticity $\varepsilon = \delta I/I : 10^{-3}$, 10^{-4} , 10^{-5} @ 8.5 kpc.

PSR J1939+2134 1283.86 Hz

Two Search Methods

Frequency domain

- Best suited for large parameter space searches
- Maximum likelihood detection method + frequentist approach

Time domain

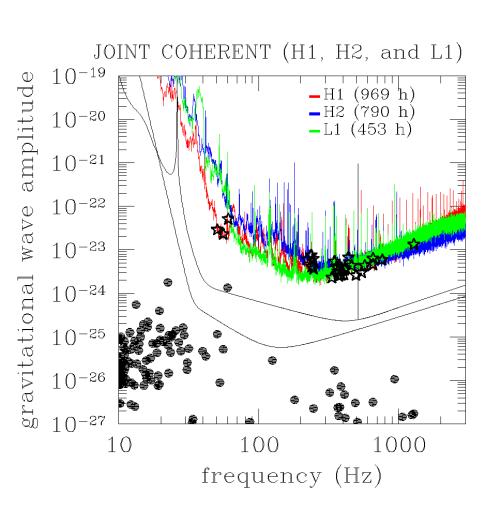
- Best suited to target known objects, even if phase evolution is complicated
- Bayesian approach

First science run --- use both pipelines for the same search for cross-checking and validation

Results: PSR J1939+2134

- No evidence of continuous wave emission from PSR J1939+2134.
- Summary of 95% upper limits on h:

<u>IFO</u>	Frequentist FDS	Bayesian TDS
GEO	(1.9±0.1) x 10 ⁻²¹	$(2.1 \pm 0.1) \times 10^{-21}$
LLO	(2.7±0.3) x 10 ⁻²²	$(1.4 \pm 0.1) \times 10^{-22}$
LHO-2K	(4.0±0.5) x 10 ⁻²²	$(2.3 \pm 0.2) \times 10^{-22}$
LHO-4K	(5.4±0.6) x 10 ⁻²²	$(3.3 \pm 0.3) \times 10^{-22}$


Best previous results for PSR J1939+2134:

$$h_o < 10^{-20}$$
 (Glasgow, Hough et al., 1983)

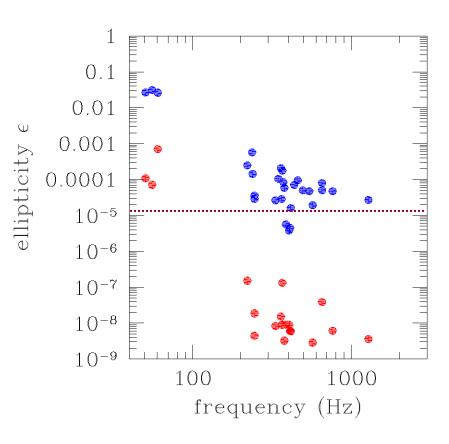
S2 Upper Limits

Note: Preliminary!

☆ 95% upper limits

- Performed joint coherent analysis for 28 pulsars using data from all IFOs
- Most stringent UL is for pulsar J1629-6902 (~333 Hz) where 95% confident that $h_0 < 2.3 \times 10^{-24}$
- 95% upper limit for Crab pulsar $(\sim 60 \text{ Hz}) \text{ is } h_0 < 5.1 \text{ x } 10^{-23}$
- 95% upper limit for J1939+2134 $(\sim 1284 \text{ Hz}) \text{ is } h_0 < 1.3 \times 10^{-23}$

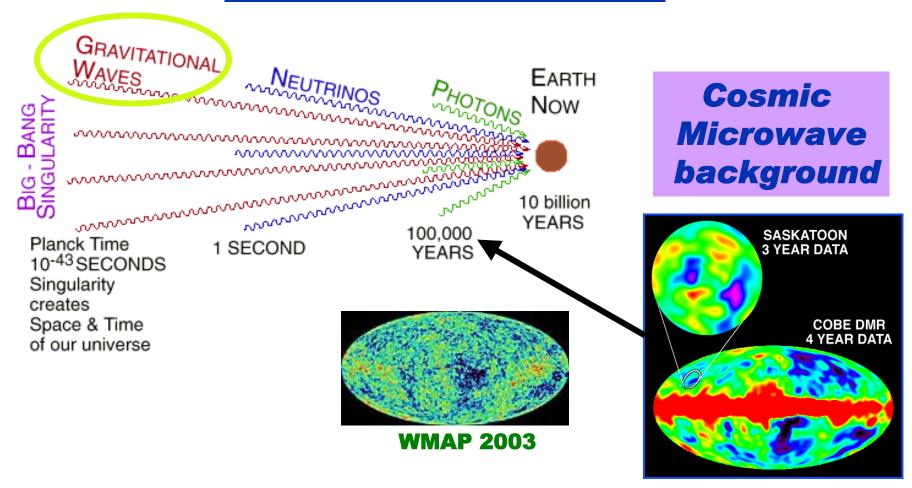
Upper Limits on Ellipticity


Note: Preliminary!

Equatorial ellipticity:

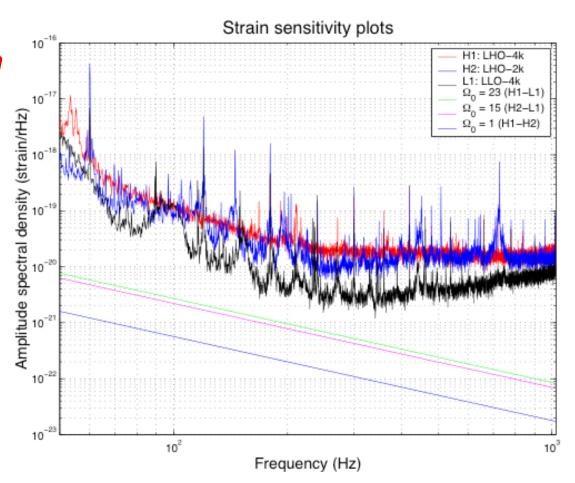
$$\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

Pulsars J0030+0451 (230 pc), J2124-3358 (250 pc), and J1024-0719 (350 pc) are the nearest three pulsars in the set and their equatorial ellipticities are all constrained to less than 10⁻⁵.


- S2 upper limits
- Spin-down based upper limits

Early Universe stochastic background

'Murmurs' from the Big Bang



Stochastic Background

 Strength specified by ratio of energy density in GWs to total energy density needed to close the universe:

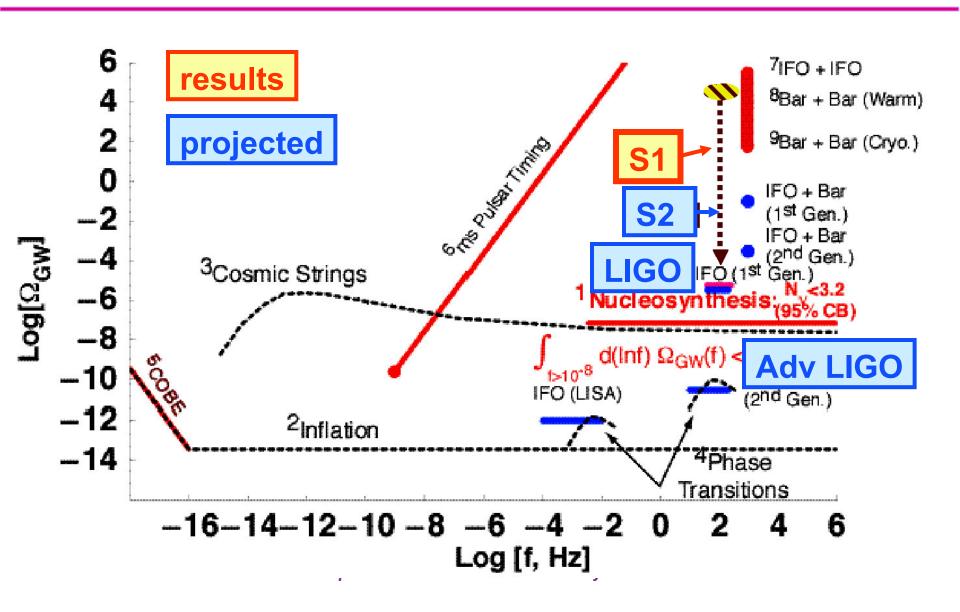
$$\Omega_{GW}(f) = \frac{1}{\rho_{critical}} \frac{d\rho_{GW}}{d(\ln f)}$$

 Detect by crosscorrelating output of two GW detectors

LIGO

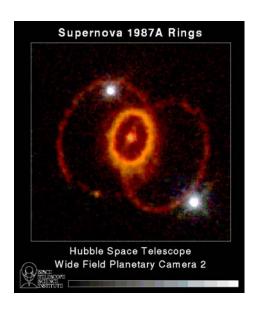
Upper Limit from Stochastic Search

Interferometer Pair	90% CL Upper Limit	T _{obs}
LHO 4km-LLO 4km	$\Omega_{\rm GW}$ (40Hz - 314 Hz) < 55	64 hrs
LHO 2km-LLO 4km	$\Omega_{\rm GW}$ (40Hz - 314 Hz) < 23	51.25 hrs


- Non-negligible LHO 4km-2km (H1-H2) instrumental cross-correlation;
 changes to the interferometer made to reduce coupling for S3
- Previous best upper limits:

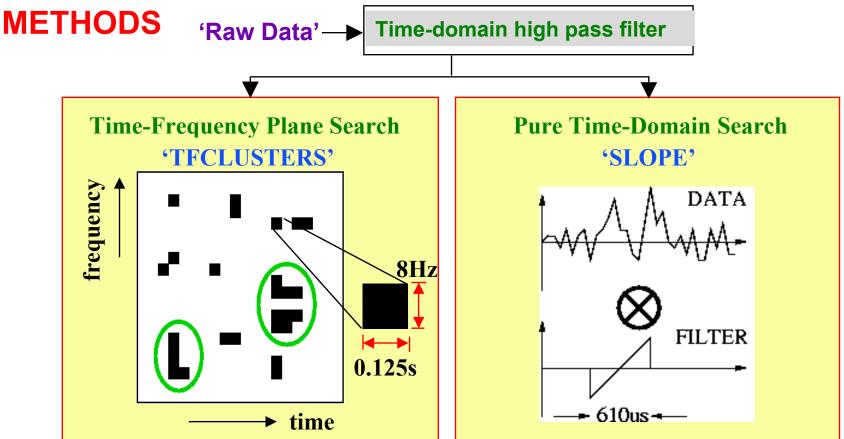
Measured: Garching-Glasgow interferometers :
$$\Omega_{GW}(f) < 3 \times 10^5$$

» Measured: EXPLORER-NAUTILUS (cryogenic bars): $\Omega_{GW}(907Hz)$ < 60


Stochastic Background sensitivities and theory

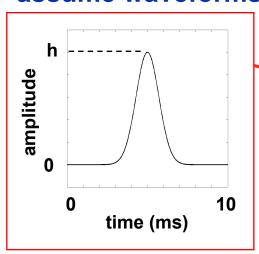
Burst Sources

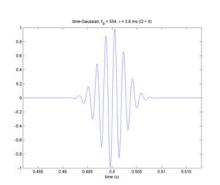
- Known sources -- Supernovae & GRBs
 - » Coincidence with observed electromagnetic observations.
 - » No close supernovae occurred during the first science run
 - » Second science run very bright and close GRB030329

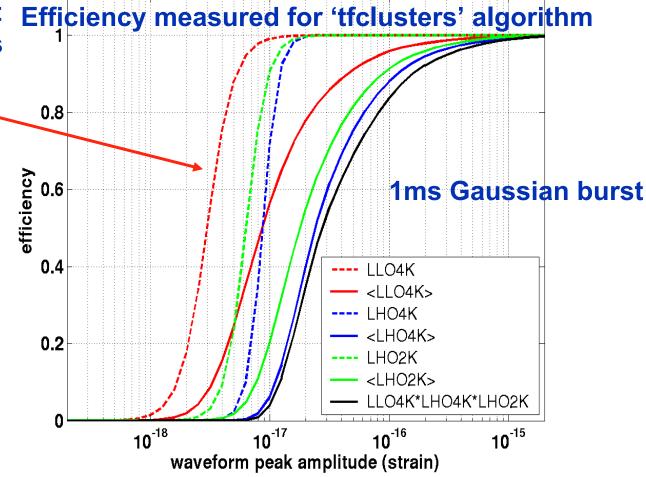


- Unknown phenomena
 - » Emission of short transients of gravitational radiation of unknown waveform (e.g. black hole mergers).

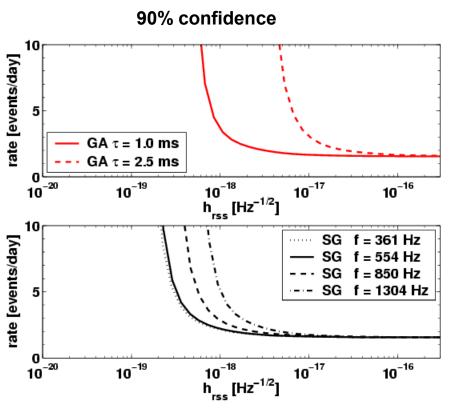
'Unmodelled' Burst Search


GOAL search for waveforms from sources for which we cannot currently make an accurate prediction of the waveform shape.




Determination of Efficiency

To measure our efficiency, we must assume waveforms


Detector efficiency vs amplitude, average over sources. GA tau=1.0ms

Upper Limit

Result is derived using 'TFCLUSTERS' algorithm

Upper limit in <u>strain</u> compared to earlier (cryogenic bar) results:

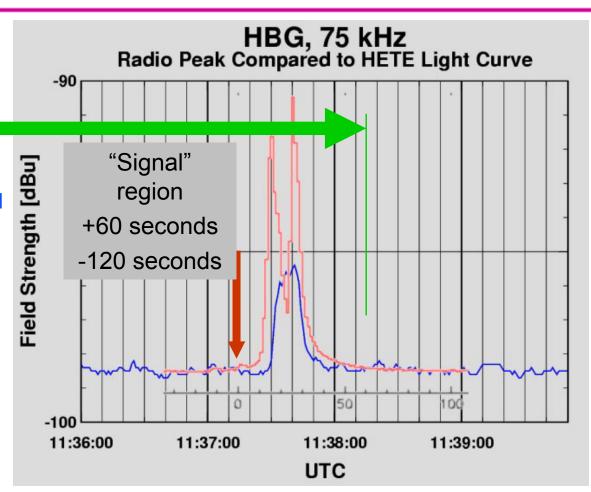
- IGEC 2001 combined bar upper limit: < 2 events per yr having h(f)=1x10⁻²⁰ per Hz of burst bandwidth. For a 1kHz bandwidth, h_{rss}=3x10⁻¹⁹ Hz^{-1/2}
- Astone et al. (2002) report a possible excess at strain level of $h_{rss} \sim 1 \times 10^{-19} \, Hz^{-1/2}$

Signal region and GRB030329 trigger

Both Hanford detectors operating for GRB030329

Optical counterpart located

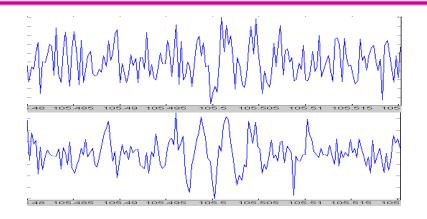
Known direction


LIGO antenna factor identified

Source distance is known z=0.1685 (d~800Mpc)

Relative delay between gravitational wave and GRB predicted to be small

Signal region to cover most predictions

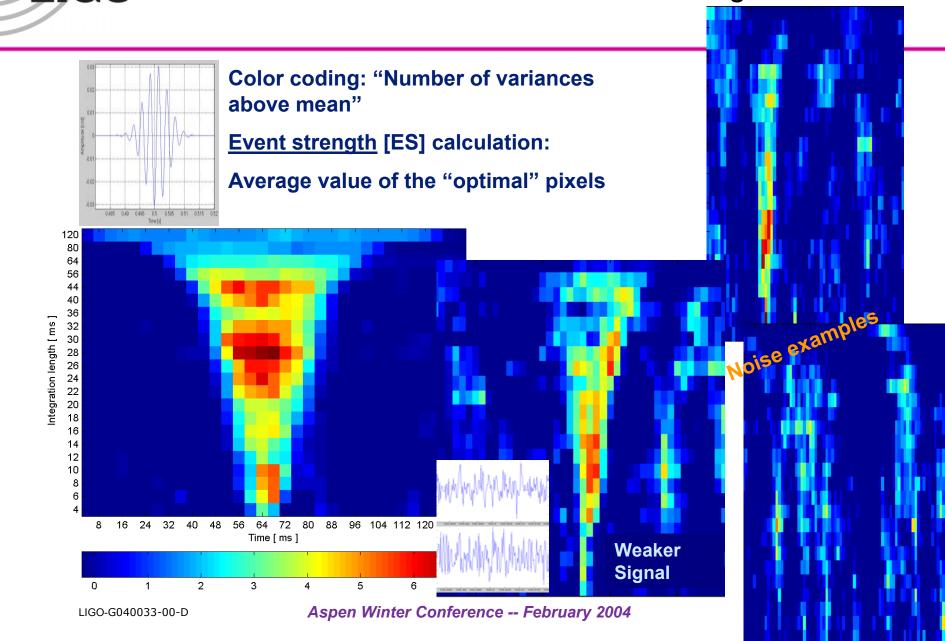

Unknown waveform/duration

http://www.mpe.mpg.de/~jcg/grb030329.html

Correlation Analysis

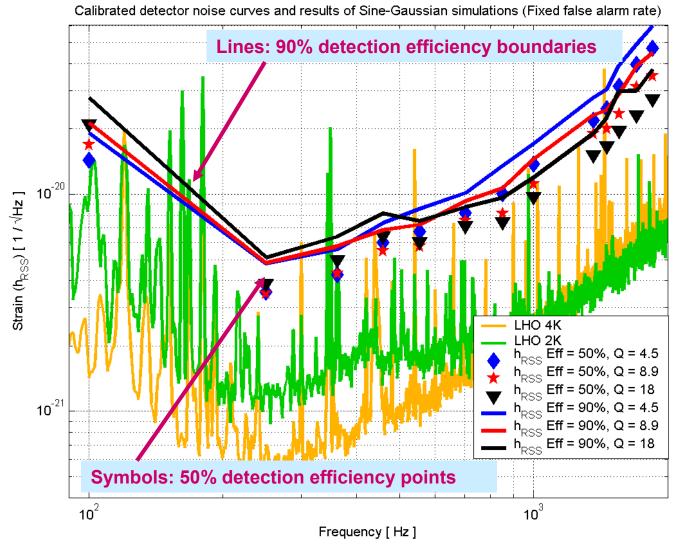
$$S_1(t) = h(t - t_1) + n_1(t)$$

$$s_2(t) = h(t - t_2) + n_2(t)$$


$$C(t, t_{w}, t_{off}) = \int_{t-t_{w}/2}^{t+t_{w}/2} s_{1}(t') s_{2}(t'+t_{off}) dt'$$

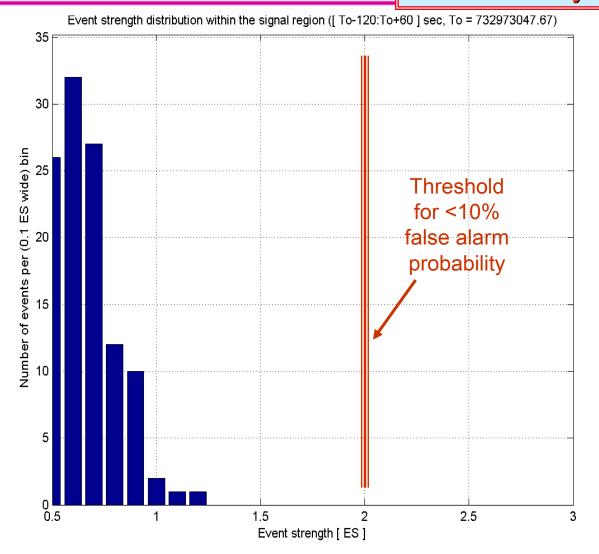
$$\approx \int_{t_{w}} h''(t) dt + \int_{t_{w}} n_{1}(t) n_{2}(t) dt$$

$$h_{rss}^{2} <>= 0$$


Event Identification - Simulated Signals

LIGO

Detection Efficiency at Fixed False Alarm Rate


- Calibration known within ~10%
- Detection efficiencies obtained for threshold corresponding to ~4 x 10⁻⁴ Hz false alarm rate (<10% probability of noise event in 180 sec)
- H1/H2 noise curves reflect levels around GRB030329

Events Within the Signal Region

Note: Preliminary!

- The signal region seems to be "relatively quiet" when compared to the neighboring regions
- No event was detected with strength above the pre-determined threshold
- It is an upper limit result

Observed Limit on h_{rss} Relates to GW Energy

$$P_{GW} \propto \left| \frac{dh(t)}{dt} \right|^2$$

For an observation (or limit) made at a luminosity distance d from a source

$$E_{GW} = \left(\frac{2\pi^2 c^3}{G}\right) d^2 \int_0^\infty f^2 \left|\widetilde{h}(f)\right|^2 df$$

$$\approx \left(\frac{2\pi^2 c^3}{G}\right) d^2 f_c^2 \int_0^\infty \left|\widetilde{h}(f)\right|^2 df$$

$$h_{res}^2$$

Example: Estimating E_{GW} for GRB030329

Note: Preliminary!

H1-H2 only

Antenna attenuation factor ~0.37 (assuming optimal polarization)

$$z = 0.1685 \Rightarrow d \approx 800 Mpc$$

For narrowband GWs near minimum of noise curve (simulated with Q≈9 250 Hz sine-Gaussian), obtain 90% efficiency

$$h_{RSS} \le 5 \times 10^{-21} [1/\sqrt{Hz}]$$

$$\Rightarrow$$
E_{GW} $\lesssim 125 M_{\odot} (1 / 0.37) \approx 340 M_{\odot}$

Prospects for Future Searches

- Sensitivity (depending on frequency)
 h_{RSS} < few x 10⁻²¹ [1/√Hz]
 - » Current limit of some hundreds of M_☉ in GWs
 - » Detector improvement: both detectors, factor of 10 30 (in h_{rss}) between S2 and final sensitivity (depending on frequency...)
 - \Rightarrow improvement of 100 300 in E_{GW}
 - » Beaming factor: estimate for every GRB detected, 100 to 500 "missed" -- reasonable for one year of observation might give 10 times closer event (cf. SN1998bw at ~ 40 Mpc)
 - \Rightarrow another factor of 100 in E_{GW}
 - » More detectors, better location in antenna pattern, better discrimination against noise events...
 - » Realistic chance to set a <u>sub-solar mass limit</u> in the near future

LIGO

Summary

- First results are in!
- Joint searches performed with GEO, TAMA
 - » Soon AURIGA, Virgo
- Developing data analysis capability
- Prospects for interesting results over the next few years good