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LIGO Presentation Overview

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Analysis Pipeline
• Pipeline Tuning
• Detection Efficiency
• Black Hole Mergers
• Current Status
• Future Plans
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LIGO Linear Predictor
Error Filter

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Removes predictable signal
content

• Whitening
• Line removal
• Simplifies statistics

• Time-frequency
• Cross-correlation
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LIGO LPEF Definition

• Linear Prediction: Assume each sample is a linear
combination of the previous M samples.

x̃[n] =
M

∑

m=1

c[m]x[n−m]

• Prediction Error: We are interested in the unpredictable
signal content.

e[n] = x[n] − x̃[n]

• Training: Choose c[m] to minimize the mean squared
prediction error.

σ2

e =
1

N

N
∑

n=1

e[n]2
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LIGO LPEF Computation

• Linear least squares optimal filter problem well known
• Yields Yule-Walker equations

M
∑

m=1

c[m]r[m− k] = r[k] for 1 ≤ k ≤M

• Robust efficient algorithms exist to train and apply
• FFT allows computation of signal autocorrelation in order
N logN

• Levinson-Durbin recursion solves Yule-Walker equations
in order M 2

• Block filtering using FFT allows application of the filter in
order N logN
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LIGO LPEF Properties

• Compensates exactly for all-pole filters

White
Noise

Linear
Predictor

Error Filter

All−Pole
Shaping

Filter

White
Noise

w x e

• In general, compensation is not exact
• Filter order, M , can compensate for features

∆f & fs/M

• Training length, N , can learn about features

∆f & fs/N
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LIGO LPEF Whitened Spectra

Amplitude spectra of S2 H1 data after whitening by LPEF
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LIGO LPEF Frequency Response

Frequency response of LPEF trained on S2 H1 data
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LIGO Zero-Phase LPEF

• Yule-Walker solution is minimum phase
• Problem: Unkown phase response produces error

coincidence time delay determination
• Solution: Symmetric FIR filters have linear phase (causal)

or zero-phase (acausal)
• Form a symmetric FIR filter by auto-correlation of LPEF

coefficients (equivalent to forward and reverse filtering)
• Problem: Magnitude response of auto-correlation of

LPEF coefficients is square of magnitude response of
LPEF coefficients

• Solution: First, find new filter with approximate square
root response
FFT → complex square root → inverse FFT
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LIGO LPEF Time Series

Effect of zero-phase LPEF on simulated Sine-Gaussian burst
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LIGO LPEF Stationarity

Whitening performance on S2 H1 data after 45 minutes
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LIGO LPEF Statistics

The distribution of time-freqeuncy pixel energies is Rician in
general, but exponential after linear predictor error filtering.

Before LPEF
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Blue: Empirical CDF of pixel energies
Magenta: Exponential CDF with same mean
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LIGO LPEF Cross-Correlation

What is the effect of linear predictor error filtering on
cross-correlation analysis? Consider the observation of a

gravitational wave burst by two interferometers:

x1(t) = b1(t) ∗ [g1(t) ∗ h1(t) + n1(t)]

x2(t) = b2(t) ∗ [g2(t) ∗ h2(t) + n2(t)]

hi(t) - incident gravitational wave burst
gi(t) - interferometer impulse response
ni(t) - additive detector noise
bi(t) - linear predictor impulse response
xi(t) - observed time series
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LIGO LPEF Cross-Correlation

Cross-correlate the two observations:

rx1,x2
(τ) = rb1,b2(τ) ∗ [rg1,g2

(τ) ∗ rh1,h2
(τ) + rn1,n2

(τ) + . . .]

• Assume the gravitational wave burst and detector noise
are uncorrelated.

• The cross-correlation of detector noise is the dominant
term inside the brackets.

• The linear predictor error filter is trained to minimize the
detector noise term.

• The desired result is “blurred” by convolving with the
cross-correlated interferometer impulse responses and
cross-correlated linaer predictor error filter coefficients.
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LIGO Cross-Correlation Example

Cross-correlation of S2 H1 and L1 zero-phase LPEF coefficients
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LIGO Discrete Q Transform

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Multi-resolution search for
time-frequency excess power

• Targets a specific range of Q
• Achieves the optimal signal to

noise ratio measurement
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LIGO Burst Parameters

Burst “energy” and normalized burst waveforms:
∫

+∞

−∞

|h(t)|2 dt =

∫

+∞

−∞

|h̃(f)|2 df = h2

rss h(t) = hrssψ(t)

∫

+∞

−∞

|ψ(t)|2 dt =

∫

+∞

−∞

|ψ̃(f)|2 df = 1 h̃(f) = hrssψ̃(f)

Central time, central frequency, duration, bandwidth, and Q:

t0 =

∫

+∞

−∞

t|ψ(t)|2 dt f0 = 2

∫

+∞

0

f |ψ̃(f)|2 df

σ2

t =

∫

+∞

−∞

(t− t0)
2|ψ(t)|2 dt σ2

f = 2

∫

+∞

0

(f − f0)
2|ψ̃(f)|2 df

σtσf ≥
1

4π
Q =

f0

σf

LIGO-G040006-00-Z Caltech LIGO Science Seminar — January 20, 2003 17/47



LIGO Multiresolution Analysis

Optimal time-frequency signal to noise ratio measurement:

ρ2 =

∫

∞

0

2|h̃(f)|2

Sh(f)
df '

h2
rss

Sh(fc)

This is only obtained if the measurement pixel exactly
matches the signal:
• Maximal burst energy in pixel
• Minimal background energy in pixel

Characterize “bursts” as signals with Q . 10

Tile the time frequency plane to maximize the detectability of

bursts within a specific range of Q
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LIGO DQT Definition

Project x[n] onto time-shifted windowed sinusoids, whose
widths are inversely proportional to their center frequencies.

XQ[m, k] =
N−1
∑

n=0

x[n]e−i2πnk/Nw[m− n, k]

Time

Fr
eq

ue
nc

y w[m − n, k]

QN/k

m n
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LIGO Fast Q Transform

Efficient computation is possible in frequency domain.

XQ[m, k] =
N−1
∑

l=0

X̃[l + k]W̃ [l, k]e−i2πml/N

• One time FFT of signal: X̃[l]

• Frequency domain window: W̃ [l]

• Inverse FFT for each frequency bin
• Only for frequency bins of interest
• Only for samples in proximity of window
• Length determines overlap in time

• Computational cost
• Dominated by initial FFT
• Varies with overlap and Q

LIGO-G040006-00-Z Caltech LIGO Science Seminar — January 20, 2003 20/47



LIGO DQT Window
Normalization

A frequency domain Hanning window is chosen for simplicity
• Near optimal time-frequency localization
• Smoothly goes to zero with finite support

The window normalization is chosen to obey a generalized
Parseval’s theorem.

fs

N2

N−1
∑

m=0

N−1
∑

k=0

|XQ[m, k]|2 =
1

N

N−1
∑

n=0

|x[n]|2 = σ2

x

The reported pixel amplitude is a combination of the noise am-

plitude spectral density and the root sum square signal ampli-

tude in units of Hz−1/2.
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LIGO DQT Pixel Mistmatch

• Mismatch between a signal and the nearest time
frequency pixel results in a loss in measured SNR.

• Fractional loss in detected SNR for a sine-gaussian burst
as a function of measurement Q and percentage overlap:
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LIGO DQT Pixel Mistmatch

• This is similar to the problem of selecting discrete
template banks in a matched filtering analysis.

• Find the maximum pixel spacing in time, frequency, and Q
such that the SNR loss due to mismatch never exceeds a
specified threshold.

• This is conveniently represented by a pixel space metric
for fractional SNR loss.

ds2 = gtt dt
2 + gff df

2 + gQQ dQ
2

• For a given test waveform:
Find gtt, gff , and gQQ.
Find dt, df , and dQ such that ds never exceeds a
specified threshold.
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LIGO DQT Example

Hardware injection seen in H1:LSC-AS_Q

Q = 5 spectrogram
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LIGO Statistics & Thresholding

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Assume white Gaussian
noise statistics

• Threshold for desired
Gaussian noise false rate

• Achieves fundamental mea-
surement accuracy
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LIGO White Gaussian Noise

After linear predictor error filtering, pixel energies are
exponentially distributed with mean and standard deviation εµ.

Probability density function:

f(ε) dε =
1

εµ

e−ε/εµ dε

Significance (false rate):

p(ε > ε0) = e−ε0/εµ

ε0εp(  >   )

ε ε

εf(  )

0

Threshold

Signal energy:

h2

0 = ε− εµ

Signal to noise ratio:

ρ2 =
ε− εµ

εµ
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LIGO Measurement Errors

Consider the measured signal to noise ratio for a true signal
energy εs and noise energy εµ.

ρ2 =
εs + εn + 2(εsεn)1/2 cosφ− εµ

εµ

There are four sources of measurement error:
• Time-frequency pixel mismatch:

Vanishes with increasing pixel overlap
• Guassian distribution of mean background energy εµ:

Vanishes with increasing measurement time
• Exponential distribution of background energies εn:

Fundamental to time-frequency measurement
• Uniform distribution of background phase φ:

Fundamental to time-frequency measurement
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LIGO Simulated Measurements

Optimal detection of Sine-Gaussian bursts in the presence of
white Gaussian noise.
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LIGO Event Selection

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Goal: Estimate of true signal
parameters

• Problem: Thresholding yields
mulitple pixels per event

• Approach: Choose most
significant pixel within cluster

• Simple robust algorithm exists
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Consider the three events
shown above.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Problem: Thresholding yields
multiple pixels per event.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Sort pixels by significance.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
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cy

Time

Start with the most significant
pixel.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Does it overlap with a more
significant pixel? No, keep it.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
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Consider the next significant
pixel.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
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Simple example
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Does it overlap with a more
significant pixel? No, keep it.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
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significant pixel

pixel pointer

current pixel
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Simple example
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Consider the next significant
pixel.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Does it overlap with a more
significant pixel? Yes!
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
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Time

Remove this pixel.
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LIGO Event Selection Algorithm

Selection algorithm
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pixel?
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Consider the next significant
pixel.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
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Simple example
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Does it overlap with a more
significant pixel? Yes!
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LIGO Event Selection Algorithm
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LIGO Event Selection Algorithm
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Consider the next significant
pixel.
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LIGO Event Selection Algorithm

Selection algorithm
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pixel?
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Does it overlap with a more
significant pixel? No, keep it.
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LIGO Event Selection Algorithm
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pixel.
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LIGO Event Selection Algorithm

Selection algorithm
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Does it overlap with a more
significant pixel? Yes!
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LIGO Event Selection Algorithm

Selection algorithm
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Remove this pixel.
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LIGO Event Selection Algorithm

Selection algorithm

decrement

pixel?
more significant

Overlaps a

point to most

significance
Sort by pixel

Threshold on
significance

significant pixel

pixel pointer

current pixel
Eliminateyes

no

Simple example

F
re

qu
en

cy

Time

Report the remaining pixels,
which best estimate the true
event parameters!
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LIGO Coincidence Testing and
Vetoing

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Event parameters allow time,
frequency, and Q coincidence
cuts

• Set significance threshold for
desired coincident false rate
(under construction)

• Study detection efficiency vs.
dead area (under
construction)

• Simplified tuning allows more
powerful veto search
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LIGO Veto Examples

Hardware injection seen in H1:LSC-AS_I

Q = 5 spectrogram
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LIGO Veto Examples

Glitches seen in H1:LSC-AS_Q
Q = 5 spectrogram
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LIGO Veto Examples

Glitches seen in H1:LSC-POB_Q
Q = 5 spectrogram
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LIGO Post-Processing?

Linear Predictor Error Filter

Discrete Q Transform

Statistics and Thresholding

Event Selection

Coincidence and Veto

Post−processing

• Not yet implemented, but
possible options include:

• Parameter estimation
• Use calibrated data
• Burst DSO

• Waveform consistency test
• Cross-correlation

• Amplitude consistency test
• Use time delay

• Heirarchical search
• Adaptive search for best

pixel match
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LIGO Tuning the Q Pipeline

• Linear predictor error filtering greatly simplifies tuning
• Reasonable choices exist for most parameters
• Independent parameters:

• Frequency band
• Targeted range of Q
• Maximum SNR loss due to pixel mismatch
• Coincidence window duration and bandwidth
• Triple coincidence false rate

• Dependent parameters:
• Linear predictor error filter order
• Linear predictor error filter training time
• Data block duration
• Time-frequency pixel overlap
• Significance threshold (under construction)
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LIGO Simulated Data

• Simulated S2 H1
noise

• Shaped Gaussian
white noise

• Included major lines
• Random injections

• Sine-gaussians
• Caveat: No glitches
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LIGO Detection Efficiency

Detection efficiency for simulated S2 H1 data
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LIGO Black Hole Mergers

A potential target source for the Q pipeline?
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LIGO Black Hole Merger Model

• Equal mass black holes with no spin
• Optimally oriented with isotropic emission
• Fraction of rest mass energy emitted, ε = 0.01

• Detectable amplitude signal to noise ratio, ρ = 5

• Dimensionless Kerr spin parameter, a = 0.9

• Energy distributed uniformly in frequency between the
ISCO and QNM frequencies.
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LIGO Black Hole Merger Energy

• Energy carried by a gravitational-wave burst:

4πr2

∫

+∞
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• Detectable signal energy:
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LIGO Black Hole Merger Range

• Characteristic frequency:

〈f 2〉 = 2

∫

∞

0

f 2|ψ̃(f)|2 df ' fISCOfQNM

• Characteristic noise:

〈Sh〉 =
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• Detectable distance:
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LIGO Black Hole Merger Range

Predicted from published detector noise spectra
for the second LIGO science run
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LIGO Black Hole Merger Search

• Control room figure of merit for the burst search

• Matched filter search for inspirals and ringdowns in
proximity to candidate burst events
• Smaller data set allows deeper search

• lower detection threshold
• finer sampling of the template space
• increased template space dimensionality

(sky position, polarization, spin, etc.)
• Candidate burst constrains astrophysical parameters

• decreased template space volume
• Astrophysical intrepretation for candidate bursts

• Hardware injection of full coalescence waveforms
• end to end test of the pipeline
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LIGO Summary

• Linear predictor error filtering greatly simplifies statistical
analysis

• The discrete Q transform achieves near optimal
time-frequency detection

• The Q pipeline provides a simple, computationally
efficient, robust technique for near optimal time-frequency
detection of gravitational wave bursts and detector
characterization

• The merger phase of binary black hole coalescences is a
potential target for the Q pipeline.
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LIGO Current Status

• Implementation
• LPEF: Matlab, DMT
• DQT: Matlab
• Event selection: C++

• Linear predictor error filters
• S2 burst analysis

• Data conditioning
• Parameter estimation
• Post-processing
• Externally triggered search

See http://ligo.mit.edu/˜shourov/
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LIGO Future Plans

• Apply to S2 data
• Pipeline Tuning
• Implementation

• LDAS / LAL / BurstDSO
• Linear predictor error filters

• Recursive least squares
• Apply to other searches?

• Post-processing
• Waveform and Amplitude consistency
• Parameter estimation

• Black hole mergers
• Burst figure of merit
• Triggered search for inspirals and ringdowns
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LIGO DQT Derivation

X̃[k] =
N−1
∑

n=0

x[n]e−i2πnk/N

Start with the discrete Fourier transform.
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LIGO DQT Derivation

XQ[m, k] =
N−1
∑

n=0

x[n]e−i2πnk/N w[m− n, k]

Introduce a shifted and scaled time domain window.

w[m − n, k]

QN/k

m n
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LIGO DQT Derivation

XQ[m, k] =
N−1
∑

n=0

x[n]e−i2πnk/N w[m− n, k]

v[n, k]

rename
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LIGO DQT Derivation

XQ[m, k] =
N−1
∑

n=0

v[n, k] w[m− n, k]

For constant k, this is a convolution in time.
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LIGO DQT Derivation

XQ[m, k] =
N−1
∑

n=0

v[n, k] w[m− n, k]

Introduce the Fourier space:

X̃[l, k] =
N−1
∑

n=0

x[n, k]e−i2πnl/N
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LIGO DQT Derivation

X̃Q[l, k] = Ṽ [l, k] W̃ [l, k]

Convolution becomes multiplication.
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LIGO DQT Derivation

X̃Q[l, k] = Ṽ [l, k] W̃ [l, k]

Ṽ [l, k] = X̃[l + k]

frequency shift property

v[n, k] = x[n]e−i2πnk/N
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LIGO DQT Derivation

X̃Q[l, k] = X̃[l + k] W̃ [l, k]

Inverse Fourier Transform yields...
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LIGO DQT Derivation

XQ[m, k] =
N−1
∑

l=0

X̃[l + k] W̃ [l, k] e−i2πml/N

the fast discrete Q-transform

Except for choice of window.
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