

The LIGO Project: a Status Report

LIGO Hanford Observatory

LIGO Livingston Observatory

Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration

Conference on Gravitational Wave Sources Trieste, Italy - September 23, 2003

LIGO-G030699-00-Z

Outline

Initial LIGO sensitivity curve

• S1 science run

- » Sensitivity
- » Data Analysis Results
- S2 science run
- Advanced LIGO

LIGO Suspended Mass Interferometer

Laser used to measure relative lengths of two orthogonal arms

Goal: measure difference in length to one part in 10²¹, or 10⁻¹⁸ meters

LIGO Organization & Support

LIGO

Conference on Sources of Gravitational Waves

The LIGO Observatory

Livingston Observatory 4 km interferometer

Conference on Sources of Gravitational Waves

CoincidenceSource triangulation*

*only on an anulus, need other worldwide sites!

International Interferometer Network

LIGO

Initial LIGO Sensitivity Goal

7

Commissioning Timeline

Approaching the Sensitivity Goal

LIGO

First Science Run (S1)

August 23 – September 9 2002 (~400 hours)

LIGO

Detector description and performance: preprint gr-qc/0308043

Three LIGO interferometers, plus GEO (Europe) and TAMA (Japan)

Longest locked section for individual interferometer: 21 hrs

	LLO-4K	LHO-4K	LHO-2K	3x Coinc.
Duty cycle	42%	58%	73%	24%

Astrophysical Searches with S1 Data

- Compact binary inspiral: *"chirps"*
- Supernovae / GRBs: *"bursts"*
- Pulsars in our galaxy: *"periodic"*
- Cosmological Signals "stochastic background"

Four papers describing analysis and results in final stages of preparation In preprint archives: Inspiral: gr-qc/0308069 Periodic: gr-qc/0308050

LIGO

Compact Binary Coalescence

Results of S1 Inspiral Search

- Previous observational limits:
 - » Japanese TAMA \rightarrow R < 30,000 / yr / MWEG
 - » Caltech 40m \rightarrow R < 4,000 / yr / MWEG
- Theoretical prediction R < 2 x 10⁻⁵ / yr / MWEG

Conference on Sources of Gravitational Waves

Burst Sources

Unknown phenomena

LIGO

Broadband search (150-3000Hz) for short transients (< 1 sec) of gravitational radiation of unknown waveform (e.g. black hole mergers).

Method: excess power or excess amplitude techniques

Uninterpreted limit

Bound on the rate of measured events

Interpreted limit

For specific classes of waveforms, bound on the rate of detected gravitational wave bursts, viewed as originating from fixed strength sources on a fixed distance sphere centered about Earth, expressed as a region in a rate v. strength diagram.

Known sources -- Supernovae & Gamma Ray Bursts

Exploit coincidence with electromagnetic observations.

No close supernovae occurred during the first science run (Second science run – We are analyzing the recent very bright and close GRB030329 <u>NO RESULT YET</u>)

LIGO

Techniques in Burst Search

Event-based analysis (event=instance of excess power/oscillation)

In S1: required time-frequency coincidence between 3 interferometers

Amplitude and waveform consistency will be implemented in future science runs

Background estimated with time-shift analysis

Comparison with IGEC results

Periodic Sources

No detection expected at present sensitivity

All sky and targeted survey of known and unknown pulsars

Targeted search of low mass X-ray binaries

• Colored curves: S1 sensitivity for actual observation time @1% false alarm, 10% false dismissal

$$\langle h_{0} \rangle = 11.4 \sqrt{\frac{S_{h}(f)}{T_{obs}}}$$

- Solid curves : Expected instr. sensitivites for One Year of Data
- Dots: Upper limits on h₀ if observed spindown all due to GW emission

Predicted signal for rotating neutron star with equatorial ellipticity $\varepsilon = \delta l/l$: 10⁻³, 10⁻⁴, 10⁻⁵ @ 8.5 kpc

PSR J1939+2134 @ 1283.86 Hz D=3.6kpc

18

Two Search Methods

Frequency domain

- Best suited for large parameter space searches
- Maximum likelihood detection method + frequentist approach
- Take SFTs of (high-pass filtered) 1-minute stretches of GW channel
- Calibrate in the frequency domain, weight by average noise in narrow band
- Compute F = likelihood ratio for source model SFT (analytically maximized over ι , ϕ , ψ)
- Obtain upper limit using Monte-Carlo simulations, by injecting large numbers of simulated signals at nearby frequencies

<u>Time domain</u>

More details in

A.Sintes talk on

Friday morning

• Best suited to target known objects, even if phase evolution is complicated

Bayesian approach

- Reduce the time dependence of the signal to that of the strain antenna pattern by **heterodyning** (model expected phase to account for intrinsic frequency and spin-down rate)
- Calculate $\chi^2(h_0, \iota, \phi, \psi)$ for source model
- Marginalize over $\iota,\,\phi,\,\psi$ to get PDF for (and upper limit on) h_0

First science run: use both pipelines for the same search for cross-checking and validation

Focused on pulsar PSR J1939+2134

Results: PSR J1939+2134

- No evidence of continuous wave emission from PSR J1939+2134.
- Summary of 95% upper limits on h:

IFO	Frequentist FDS	Bayesian TDS	
GEO	(1.94±0.12) x 10 ⁻²¹	(2.1 ±0.1) x 10 ⁻²¹	
LLO	(2.83±0.31) x 10 ⁻²²	(1.4 ±0.1) x 10 ⁻²²	
LHO-2K	(4.71±0.50) x 10 ⁻²²	(2.2 ±0.2) x 10 ⁻²²	
LHO-4K	(6.42±0.72) x 10 ⁻²²	(2.7 ±0.3) x 10 ⁻²²	gr-qc/0308050

 $h_0 < 1.4 \times 10^{-22}$ (from L1) constrains ellipticity $< 2.7 \times 10^{-4}$

Best previous results for PSR J1939+2134: $h_o < 10^{-20}$ (Glasgow, Hough et al., 1983)

Stochastic Background

Goals:

Improved energy limit on stochastic background Search for background of unresolved gravitational wave bursts

• Strength specified by ratio of energy density in GWs to total energy density needed to close the universe:

$$\Omega_{GW}(f) = \frac{1}{\rho_{critical}} \frac{d\rho_{GW}}{d(\ln f)}$$

Detect by cross-correlating output of two GW detectors:

- » Break data into (2-detector coincident) 900-second stretches
- » Break each of these into 90-second stretches

LIGO

- » Window, zero pad, FFT, estimate power spectrum for 900 sec
- » Remove ¹/₄ Hz bins at n•16 Hz, n•60 Hz, 168.25 Hz, 168.5 Hz, 250 Hz
- » Compute cross-correlation statistics with filter optimal for $\Omega_{GW}(f) = \Omega_0$
- » Extensive statistical analysis to set 90% confidence upper limit

Preliminary Limits from the Stochastic Search

Interferometer Pair	90% CL Upper Limit	T _{obs}
LHO 4km-LLO 4km	Ω _{GW} (40Hz - 314 Hz) < 72.4	62.3 hrs
LHO 2km-LLO 4km	Ω _{GW} (40Hz - 314 Hz) < 23	61.0 hrs

- Non-negligible LHO 4km-2km (H1-H2) instrumental cross-correlation; currently being investigated.
- Previous best upper limits:
 - » *Measured:* Garching-Glasgow interferometers :
 - » Measured: EXPLORER-NAUTILUS (bars):

 $\Omega_{GW}(f) < 3 \times 10^5$ $\Omega_{GW}(907Hz) < 60$

Second Science Run (S2)

February 14 – April 14 2003 (~1400 hours)

- Three LIGO interferometers and TAMA (Japan)
- Duty cycle similar to S1
 - » Increased sensitivity did not degrade operation
 - » Longest locked stretch ~ 66 hours (LHO-4K)

Improvements since S1:

- Digital suspensions installed on LHO-2K and LLO-4K
- Optical path improvements (structural stiffening, filters)
- More power (better alignment stability)
- Better monitor of suspended optics alignment using the main laser beam (wavefront sensing)

Conference on Sources of Gravitational Waves

Virgo Cluster

LIGO

S2 Sensitivity and Stability

26

What's next? Advanced LIGO

• Goals:

LIGO

- » Quantum-noise-limited interferometer
- » Factor of ~ 10 increase in strain sensitivity => ~ 1,000 x increase in event rates

• Schedule:

- » Begin installation: 2007
- » Begin observing: 2010

(Unconfirmed until funding requests are approved)

Science from the first 3 hours of Advanced LIGO observing should be comparable to 1 year of initial LIGO

Design Features of Advanced LIGO

Quadruple suspensions (GEO)

Advanced LIGO

40 kg sapphire test mass

ce on Sources of Gravitational Waves

Advanced vs Initial LIGO

Summary

- Commissioning of LIGO detectors is progressing well
 - » Third Science Run (S3) will be Nov 2003 Jan 2004
- Science analyses have begun
 - » S1 results demonstrate analysis techniques, paper publications are imminent
 - » S2 data (already 'in the can') x10 more sensitive and analyses currently underway
- Aiming at design performance by next year
 - » Initial LIGO observation through 2006
- Advanced LIGO

LIGO

- » Dramatically improves sensitivity
- » Substantial R&D effort across the LIGO Scientific Collaboration (LSC)