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9) Describe the down select process that led to the 
laser selection in more detail

David Shoemaker 

NSF Annual Review of the LIGO Laboratory
18 November 2003
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Process

• Interested research groups pursued separate approaches to laser
– Adelaide, Stanford, Laser Zentrum Hannover

• Three collaborating groups developed joint test document
• Key parameters measured by traveling team to two working 

prototypes
– Adelaide not functioning due to continuing technical difficulties

• Round-table discussion of results at Collaboration meeting, LIGO 
technical management participating

• Choice of baseline made by subsystem leader (Uni Hannover/Max 
Planck) with LIGO concurrence

• Design pursued by Max Planck with MPI funding 
– Would have pursued any adopted design
– Ended up with the MPI design
– Adelaide laser to be used at Gingin
– Stanford moving away from slab concept to fiber lasers
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Test Plan highlights

• Key Questions:
– 1) Does the particular concept promise a successful 

development with high certainty?
– 2) Can the key technology be transferred to the system 

developers and manufacturers?
– 3) What are the potential sources of run time malfunction?
– 4) Can the effort that is needed to reach LIGO specs be 

estimated? (e.g. number of work packages, known
– but not yet solved problems, specialized components of limited 

availability or components with
– extraordinary tight tolerances)
– 5) Are there fringe benefits, e.g. a significant over-fulfillment of 

specs?
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Tests to distinguish between solutions

• Full 1064 nm output power in main beam
• Pre-modecleaner (PMC) transmission/reflection actuator/error signal
• Single frequency operation
• Power Fluctuations before PMC
• Drift and Jitter of beam axis and other low order beam moments before 

PMC
• Polarization and polarization fluctuations before PMC
• Reaction of the system to deliberate, power stage pump reduction
• Reaction of the system to a misalignment in one or more degrees of 

freedom
• Requirements on the master oscillator power / master oscillator power drop
• Start up procedure and time
• Set up procedure/time/effort from pre-assembled parts
• Requirements of resources / efficiency
• Scaling concept
• Technology transfer
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• Excerpts from 

Lasers Working Group summary

B. Willke

LSC meeting, LLO March 2003
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100-80-60
-40-20 Noise Pow

er (dBm

IjtiLkdL
Master  Laser0.250.50.7511. 251.51.752-100-80-60

-40-20Noise Pow
)

Frequency ( MHz)Injection-Locked Laser
Master  Laser

Reflecting prismNd:YAG  TIR slab  

GRM outputcoupler, flat 
Horizontal modecontr ol

Reflecting prism

Nd:YAG  TIR slab  

GRM output
coupler, flat 

Horizontal mode
control

max-R cylindrical mirror,
convex in vertical plane

100W Laser Configuration

• slab is side-pumped by 520W of
fibre-coupled diode lasers

• resonator is stable in the zig-zag
(horizontal) direction, unstable in the
vertical direction

stable-unstable oscillator - Adelaide

• demonstrated 30W injection-locked 
stable-unstable oscillator

• technical problems and delays in 100W 
system

- inhomogeneous pump light 
distribution / pump light fluctuations

- slabs not delivered to specifications

- birefringence in vertical directions



Experimental Setup for 100W demonstration
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High Power Locking Scheme
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RIN – GW band
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laser power

oscillator LZH         MOPA 
(Stanford)

output power 80W 65W

power fluctuations  (over 10s) high low 

RIN  - GW band / RF similar

higher order mode content similar

fluctuations between power in
higher order modes low high
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downselect 

• performance of MOPA / oscillator at current power levels is similar

• scaling concept to 200W level: risks involved in all systems 

• most efficient choice (delays, costs) for conceptual design phase 

(to be performed at Laser Zentrum Hannover) is to choose 

injection-locked stable-rod oscillator

• LSC will support the MOPA / injection-locked stable-unstable 

development  at Stanford and Adelaide as back-up solutions for 

the PSL
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