LIGO

9) Describe the down select process that led to the laser selection in more detail

David Shoemaker

NSF Annual Review of the LIGO Laboratory 18 November 2003

Process

- Interested research groups pursued separate approaches to laser
 - Adelaide, Stanford, Laser Zentrum Hannover
- Three collaborating groups developed joint test document
- Key parameters measured by traveling team to two working prototypes
 - Adelaide not functioning due to continuing technical difficulties
- Round-table discussion of results at Collaboration meeting, LIGO technical management participating
- Choice of baseline made by subsystem leader (Uni Hannover/Max Planck) with LIGO concurrence
- Design pursued by Max Planck with MPI funding
 - Would have pursued any adopted design
 - Ended up with the MPI design
 - Adelaide laser to be used at Gingin
 - Stanford moving away from slab concept to fiber lasers

Test Plan highlights

Key Questions:

- 1) Does the particular concept promise a successful development with high certainty?
- 2) Can the key technology be transferred to the system developers and manufacturers?
- 3) What are the potential sources of run time malfunction?
- 4) Can the effort that is needed to reach LIGO specs be estimated? (e.g. number of work packages, known
- but not yet solved problems, specialized components of limited availability or components with
- extraordinary tight tolerances)
- 5) Are there fringe benefits, e.g. a significant over-fulfillment of specs?

LIGO Tests to distinguish between solutions

- Full 1064 nm output power in main beam
- Pre-modecleaner (PMC) transmission/reflection actuator/error signal
- Single frequency operation
- Power Fluctuations before PMC
- Drift and Jitter of beam axis and other low order beam moments before **PMC**
- Polarization and polarization fluctuations before PMC
- Reaction of the system to deliberate, power stage pump reduction
- Reaction of the system to a misalignment in one or more degrees of freedom
- Requirements on the master oscillator power / master oscillator power drop
- Start up procedure and time
- Set up procedure/time/effort from pre-assembled parts
- Requirements of resources / efficiency
- Scaling concept
- Technology transfer

Excerpts from

Lasers Working Group summary

B. Willke

LSC meeting, LLO March 2003

stable-unstable oscillator - Adelaide

100W Laser Configuration

- demonstrated 30W injection-locked stable-unstable oscillator
- technical problems and delays in 100W system
 - inhomogeneous pump light distribution / pump light fluctuations
 - slabs not delivered to specifications
 - birefringence in vertical directions

Adelaide University

ACIGA

Experimental Setup for 100W demonstration

High Power Locking Scheme Setup

spatial profile – scanning cavity

mode count locked

Oscillator: T=81% T=74%

MOPA: T=84% T=73%

G030654-00-R

RIN – GW band

laser power

(Stanford)	oscillator LZH	MOPA
output power	80W	65W
power fluctuations (over 10s)	high	low
RIN - GW band / RF	similar	
higher order mode content	similar	
fluctuations between power in higher order modes	low	high

downselect

- performance of MOPA / oscillator at current power levels is similar
- scaling concept to 200W level: risks involved in all systems
- most efficient choice (delays, costs) for conceptual design phase (to be performed at Laser Zentrum Hannover) is to choose injection-locked stable-rod oscillator
- LSC will support the MOPA / injection-locked stable-unstable development at Stanford and Adelaide as back-up solutions for the PSL