High Power Test Facility

Report

David McClelland, Bram Slagmolen, John Jacobs ACIGA

LSC Meeting, November 203.

• LIGO-G030643-00-Z

Purpose

- Diagnose cavity operation, stability and *dynamics* at A/LIGO circulating power (~ 1MW)
- Investigate thermal deformation and control in high power cavities
- Investigate 'cold' lock up to full operating power, including changes to control and alignment signals
- field test a high power (>100 W) laser.
- field test high power conditioned input optics
- validate optical cavity modelling codes
- integrate a high power laser system with a high power handling input optics system, a core optics system and a high power photo detection system.

Status

- Major funding commenced January 2002
- Staff:
 - 1 Res. Fellow; 1 Engineer; 5 techs; grad students; academic staff; LIGO 3 person months p.a.
- LIGO commitment:
 - core (2) and PR & MC optics; Suspensions and controllers; high power optical modulators, isolators.
- Completed
 - Central laboratory end stations at 80m + pipe + vacuum
 - 1 vacuum chamber processed
 - Laboratory has now gone clean
- Current
 - Slagmolen, Jacobs

Optical Design

- Rationale
 - Should be as A/LIGO like as possible
 - Input power, circulating power, spot sizes, cavity stability (g factors), cavity lengths
- Allow results to apply to A/LIGO
 - Simple scaling
 - Model validation

Step 1: arm cavity See Bram, John

- 80 m stable cavity (g1 g2 > 0.8?)
- 10 W laser
- include thermal readout; AOC
- **Step 2:** reverse ITM
 - increase laser power, 50W?

Steps 3: PR arm cavity

ACIGA/LIGOHigh Power Test Program: Milestones and deliverable

$\mathbf{\sigma}$			
Milestone	By end of	FROM	ТО
DAS cluster	03/02	Supplier	ANU
Suspension systems delivered	10/03	LIGO, CIT	GRF
Vacuumenvelope including washing and baking	12/03	UWA	GRF
Isolation with wiring and local control + clean environment	01/04		
InputOptics system with fixed spacer mode cleaner (MC) to handle 10W	01/04	UWA	GRF
10 W laser	12/03	AU	GRF
Mode cleaner for 100 Wdown select	12/03	AU	
Sapphire test masses (order to be placed 06/02) (fused silica dummies?)	<mark>01/04</mark>	LIGO	GRF
Hartmann sensor + actuation (compensation plate)	01/04	AU, ANU,LSC	GRF
Auto alignment system	02/04	ANU	GRF
10 W power photo detection	02/04	ANU	GRF
Locked 80 m cavity with internal ITM substrate, dummy optics, pumped by	02/04	UWA, ANU,	GRF
MISER.		AU, LSC	
Locked 80m cavity with internal ITM substrate, pumped by 10W, with auto	04/04	UWA, ANU,	GRF
alignment and AOC.		AU, LSC	
Test 1 Completed: Locked 80 m cavity with internal ITM substrate, pumped by	<mark>05/04</mark>	GRF	LIGO, LSC
10 W, circulating power 2.1 kW. Analysis reported:			
Test 2 installation begins: Locked 80 m cavity with external ITM substrate; 10 W	05/04	ACIGA	GRF
pump.			
100W class laser installed.	06/04	AU	GRF
High power op i cal mod and isolators delivered	<mark>06⁄04</mark>	UF	<mark>GRF</mark>
High power IOO & detection system installed	08/04	LSC, ACIGA	GRF
Test 2 Completed: Locked 80 m cavity with external ITM substrate, pumped by	<u>02/05</u>	GRF	<u>LSC</u>
50 W, circulating power 100 kW. All sensors operational Analysis reported:			
Test 3 installation begins: powerrecyded single FP; 100Wpump	03/05	ACIGA	
New sapphire ITM + fused silica PRM (ordered 10/04)	<mark>03/05</mark>	LIGO	GRF
Test 3 Completed: Locked PR FP cavity; 100Winput; 8 kW in PRC; 400kWin	11/05	ACIGA	LIGO, LSC.
FP; ful sensing and control; cold to hot operation. Diagnosis completed and			
report compiled.			