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e2e Simulation Techniques
in Quantum Microscopy
and GW Interferometry

Design Goal: Get what we want to go from where we are

What we want downstream: Hardware that works
— Optimally designed and optimally controlled
— All the transfer function poles and zeros, in closed form
— Autonomous control software (autodiagnostic and self-calibrating)
— Reliable predictions for signal, noise, and SNR, in closed form

What we’ve got upstream: Classical response of the system
— The mechanical dynamics (suspension modes, frequencies, etc.)
— The measured decoherence (Q’s, noise temperatures, shot noise, etc.)
— The optical scattering phases (finesses, Hermite-Gauss modes, etc.)

 Message |: We’ve got enough to design our hardware!

— Enough for an automated quantum-mechanical e2e analysis
— This is our primary UW/QSE goal for 2004

. . UWLSCP tation
Message II: as presently designed, advLIGO will not Work .| |GG Hanford Laboratory

— But LIGO/LSC could apply our methods Date: November 12, 2003

. . Presenter: John Sidles
to fix the advLIGO design LIGO-GO030635-00-7



/

MISSION ——
* BASIC SCIENCE

Objective: EStablls.h _t_he basic

science of quantum imaging.

A Single-Spin
* BASIC SCIENCE
/7

KK Decoherence
* BASIC SCIENCE
-

Q) Gradients
* BASIC SCIENCE

~
J Nanomechanics
* BASIC SCIENCE

(10 Magnetics

* BASIC SCIENCE

* BASIC SCIENCE

& Polarization
* BASIC SCIENCE

Objective: Dynamically polarize
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What We Want Downstream

« The control theory block diagram
(quant-ph/0211108 )
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 The control theory closed-form result:
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Including all the poles and zeros!

Signal:

Noise:

Sy(w)



e Working back to what we’re got
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« A unique path integral equivalence:
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in force microscopy.

Remarks: Several methods What We What We integrate Over a” Complex
tonsible: practical bio- measure apply test mass trajectories action

imaging would gain greatly.

s ® -« This formalism known to Feynman, Mensky, and Caves,
HEaiEIod 8 equivalent to that of Thorne, Braginsky, Buonanno
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Objective: Dynamically polarize

spins for 3D microscopy.

Status: Not yet demonstrated
in force microscopy.
Remarks: Several methods

feasible; practical bio-

imaging would gain greatly.
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Working back to what we’re got

Uin >
Aout (q (t) ) D

linear
optics

These two amplitudes, plus the photon detection
statistics, completely determine both the system
dynamics and the quantum noise.

» General optical kernels :

aout(q(t)) = ain (1 + /oodt’ a(t —t)ql(t
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» Optical kernels for Fabry-Perot cavities:

sideband amplitude
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Now we're done. For linear systems (like advLIGO)
the rest is just plugging in to the path integral.



Fixing advLIGO in 2004: Suggestions

Switch advLIGO now to negative-g cavities
— Positive-g cavities are grossly unstable
— Negative-g cavities aren’t much better!

Calculate ASAP the e2e transfer function
— Locate all the poles and zeros analytically
— Prove the system is observable and controllable
— Calculate noise injected by stabilizing control

Then optimize the advLIGO design
— Noise near SQL
— 10 Hz roll-off

TABLE I: Cavity parameters and stiffness values for current
LIGO and the advanced LIGO design.

paramecter LIGO advLIGO unit
P 15 830 kW
g1 0.460 + 0.927 -
g2 0.726 + 0.927
Rpendulum ~ 0.41 ~ 24 N-m
Rmajor —0.96 :FSUJ_ N-m
Kninor 0.25 +11.5 N'm

— Controllable/observable Find out: are these

_ High optical power goals compatible?

— Large beam diameter ’
— Good seismic isolation
Be prepared to accept:
— Very substantial revisions to present design

— Far closer coupling of ISC, COC, and SUS
— EZ2e analysis as the “One Ring” of advLIGO
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IF'IG. 4: Dynamical behavior of the test mass. (a) Poles of
the transfer function 7'(w) as the cavity tuning is varied over

— A path integral script as the implementation of e2e analysis

— Asking NSF for more money and time

Be prepared to answer: Does advLIGO make technical sense at this time?




The Voyage of Discovery!

Thanks for the adventure!
-- and --
there is not a moment to lose!
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