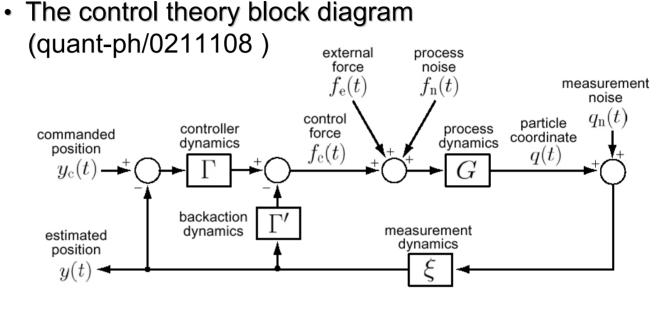
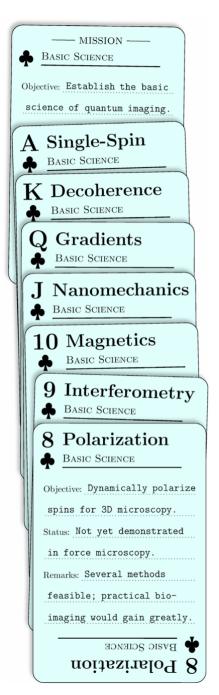

UW Quantum System Engineering Group

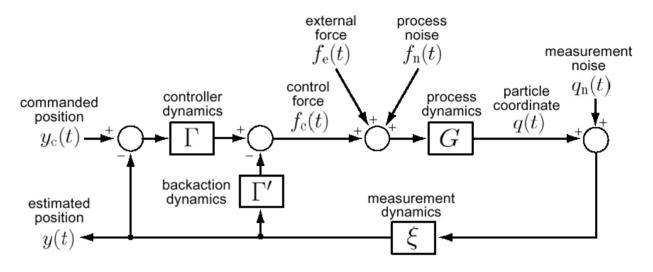

e2e Simulation Techniques in Quantum Microscopy and GW Interferometry

- Design Goal: Get what we want to go from where we are
- What we want downstream: Hardware that works
 - Optimally designed and optimally controlled
 - All the transfer function poles and zeros, in closed form
 - Autonomous control software (autodiagnostic and self-calibrating)
 - Reliable predictions for signal, noise, and SNR, in closed form
- What we've got upstream: Classical response of the system
 - The mechanical dynamics (suspension modes, frequencies, etc.)
 - The measured decoherence (Q's, noise temperatures, shot noise, etc.)
 - The optical scattering phases (finesses, Hermite-Gauss modes, etc.)
- Message I: We've got enough to design our hardware!
 - Enough for an automated quantum-mechanical e2e analysis
 - This is our primary UW/QSE goal for 2004
- Message II: as presently designed, advLIGO will not work
 - But LIGO/LSC could apply our methods to fix the advLIGO design

UW LSC Presentation At: LIGO Hanford Laboratory Date: November 12, 2003 Presenter: John Sidles LIGO-G030635-00-Z

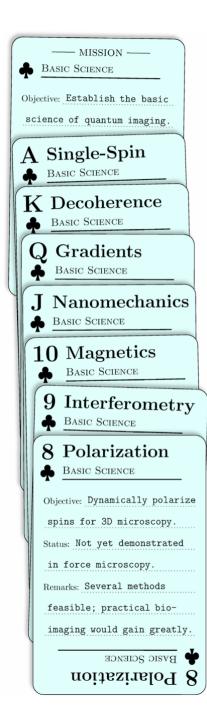

What We Want Downstream

• The control theory closed-form result:


$$\begin{split} \text{Signal:} \quad \langle \tilde{y}(\omega) \rangle &= \frac{\tilde{\xi}(\omega)\tilde{G}(\omega)(\tilde{f}_{e}(\omega) + \tilde{\Gamma}(\omega)\tilde{y}_{c}(\omega))}{1 + \tilde{\xi}(\omega)\tilde{G}(\omega)\big(\tilde{\Gamma}(\omega) + \tilde{\Gamma}'(\omega)\big)} \\ \text{Noise:} \quad S_{y}(\omega) &= \frac{\big(S_{q}(\omega) + |\tilde{G}(\omega)|^{2}S_{f}(\omega)\big)|\tilde{\xi}(\omega)|^{2}}{\big|1 + \tilde{\xi}(\omega)\tilde{G}(\omega)\big(\tilde{\Gamma}(\omega) + \tilde{\Gamma}'(\omega)\big)\big|^{2}} \end{split}$$

Including all the poles and zeros!

Working back to what we're got


• The control theory block diagram

• A unique path integral equivalence:

$$\begin{split} P(y(t)|f_{\rm e}(t),y_{\rm c}(t)) &= \left| \int [dq] \exp \left[\mathcal{A}(q,y,f_{\rm e},y_{\rm c}) \right] \right|^2 \\ \uparrow & \uparrow & \uparrow \\ \text{what we what we integrate over all complex measure apply test mass trajectories action} \end{split}$$

 This formalism known to Feynman, Mensky, and Caves, equivalent to that of Thorne, Braginsky, Buonanno

Working back to what we're got

 $a_{in} \xrightarrow{} linear$ $a_{out}(q(t)) \xleftarrow{} optics$

• General optical kernels :

These two amplitudes, plus the photon detection statistics, completely determine both the system dynamics and the quantum noise.

$$a_{\text{out}}(q(t)) = a_{\text{in}} \left(1 + \int_{-\infty}^{\infty} dt' \,\alpha(t - t')q(t') + \int_{-\infty}^{\infty} dt' \int_{-\infty}^{\infty} dt'' \,\beta(t - t', t - t'')q(t')q(t') \right)$$

Optical kernels for Fabry-Perot cavities:

$$\tilde{\alpha}(\omega) = \frac{2ike^{i\tau(2\omega_0+3\omega)}\sin^2\rho}{(e^{i\tau(2\omega_0+\omega)}-\cos\rho)(e^{i\tau(2\omega_0+\omega)}\cos\rho-1)}$$

$$\tilde{\beta}(\omega,-\omega) = \frac{\tilde{\alpha}(\omega)\tilde{\alpha}(-\omega)\sin^2\rho}{2(\sin^2\rho-2i\sin(2\tau\omega_0)\cos\rho)}$$
sideband amplitude

Now we're done. For linear systems (like advLIGO) the rest is just plugging in to the path integral.

Fixing advLIGO in 2004: Suggestions

- Switch advLIGO now to negative-*g* cavities
 - Positive-g cavities are grossly unstable
 - Negative-g cavities aren't much better!
- Calculate ASAP the e2e transfer function
 - Locate all the poles and zeros analytically
 - Prove the system is observable and controllable
 - Calculate noise injected by stabilizing control
- Then optimize the advLIGO design
 - Noise near SQL
 - 10 Hz roll-off
 - Controllable/observable
 - High optical power
 - Large beam diameter
 - Good seismic isolation
- Be prepared to accept:
 - Very substantial revisions to present design
 - Far closer coupling of ISC, COC, and SUS
 - E2e analysis as the "One Ring" of advLIGO
 - A path integral script as the implementation of e2e analysis
 - Asking NSF for more money and time
- Be prepared to answer: Does advLIGO make technical sense at this time?

TABLE I: Cavity parameters and stiffness values for current LIGO and the advanced LIGO design.

parameter	LIGO	advLIGO	unit
P	15	830	kW
g_1	0.460	± 0.927	_
g_2	0.726	± 0.927	_
$\kappa_{ m pendulum}$	~ 0.41	~ 2.4	N·m
$\kappa_{ m major}$	-0.96	∓ 301	N·m
$\kappa_{ m minor}$	0.25	± 11.5	N·m

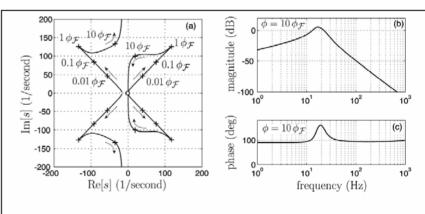
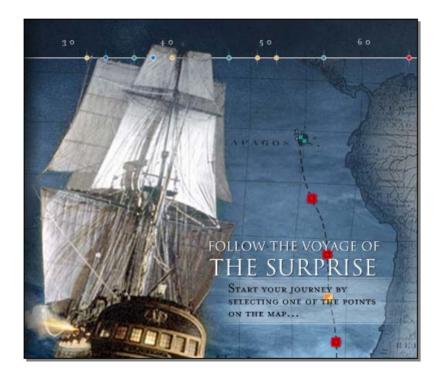



FIG. 4: Dynamical behavior of the test mass. (a) Poles of the transfer function $\tilde{T}(\omega)$ as the cavity tuning is varied over

The Voyage of Discovery!

Thanks for the adventure! -- and -there is not a moment to lose!