

BEAM ALIGNMENT AND DRIFT OF OPTICS

By: Stephanie Raymond LSU / Millsaps College

with Gabriela Gonzalez and Ken Watts

PURPOSE

 Aid initial alignment by providing a visual configuration for the operator, supplementary to WFS and dithering.

- Compare the image of the beam on the optics during data taking
 - Determine good position of beam from a good lock
 - Monitor beams on optics and beams on photodiodes
 - Determine drift of the beams on the optics

Technique

Image Acquisition

- Access channels (ETMX, ETMY, ITMX, ITMY, AS_PD, AS_Q, BS, and MC_TRANS)
- Capture frames
- Image Processing
 - Filtering
 - Fourier transform
 - Locate center of beam
 - Calculate correlation coefficient
 - Subtraction of images

single-arm lock

full lock

Outline of Software

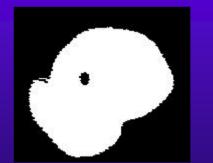
- Input reference image
- Grab frame
 - Access video card
 - Select input channel
- Run script
 - Process images
 - Fourier transforms
 - Difference image
 - Correlation coefficient
- Display difference image with correlation coefficient
- Clear workspace and repeat

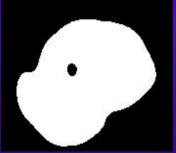
Cropping

- Have the option to disclude the OSEMs, but this sometimes clips the image of the beam
- Centering method solves problem of change in luminosity of OSEMs affecting the correlatioin coefficient

Filtering

MC_REFL

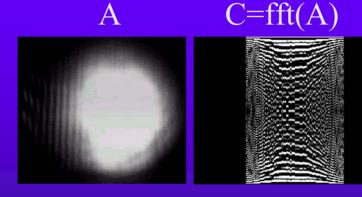

Commands

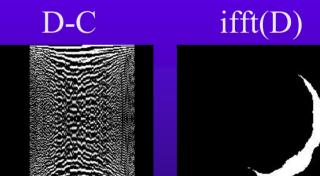

- im2bw converts colorscale to grayscale to binary
- medfilt2 eliminates "salt and pepper" noise
- Information is lost to filtering

• The purpose of filtering is to make viewing easier for the Operator

input image

im2bw


medfilt2


Difference Image

IFO_REFL

 Order of operations is important in accurately displaying which direction the beam needs to move

B D=fft(B)

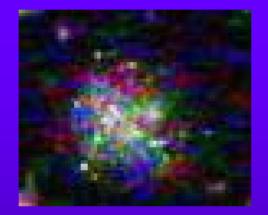
Fourier Transform vs. Simple Math

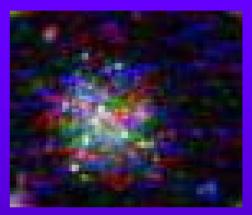
Simple Subtraction of Images

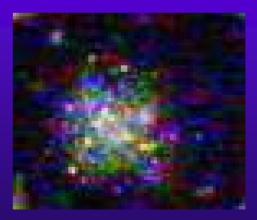
- Ignores intensity dependence
- Reduces number of steps in image processing
- Does not expedite script
- Fourier Transform
- Prevents having to calibrate the intensity
- Produces sharper image

For Example

ETMY (single arm)


Reference Image




Cont. Example

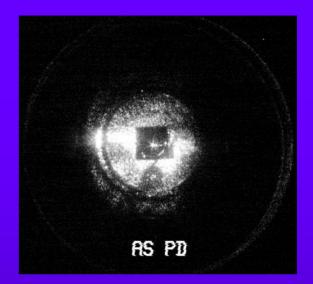
ETMY (single arm)

Quantitative and Qualitative Representations of Misalignment

CORRELATION=79.62

CORRELATION=83.46

CORRELATION=85.17



CORRELATION=86.5

CONCLUSION

 Fourier transform method successfully displays misalignment of beam relative to reference image during initial alignment

- Develop beam center method that will be useful in monitoring drift of beam on optics
- Data collected during S3 will determine extent if any to which beams on optics drift
- Study correlations of beam position on AS_PD with data quality