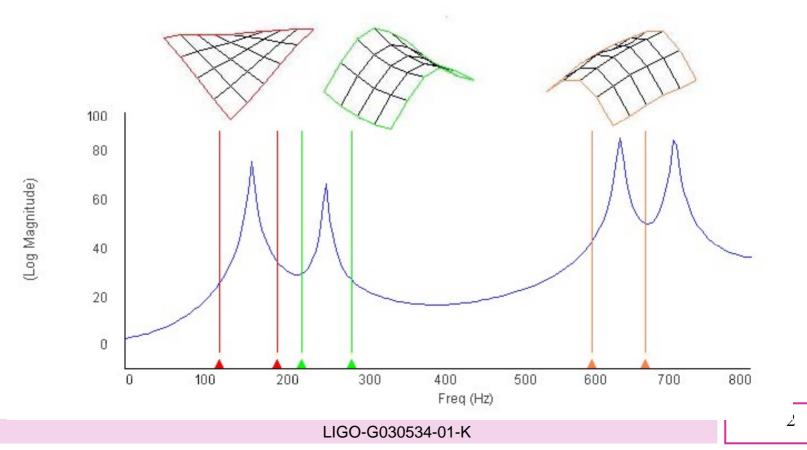


Modal testing facility for Advanced LIGO


Caroline Cantley University of Glasgow Advanced LIGO SUS Workshop, Caltech, Oct 17 '03

LIGO-G030534-01-K Oct 28, 2003

1

What is modal testing?

 Experimental process of characterising the dynamic behaviour of a structure in terms of its modal properties (frequencies / mode shapes / damping factors)

Why do we need a modal testing facility?

Modal analysis of structure

- Establish modal parameters (dynamic properties)
 - Natural frequencies
 - Mode shapes
 - Damping factors

Can be done by:

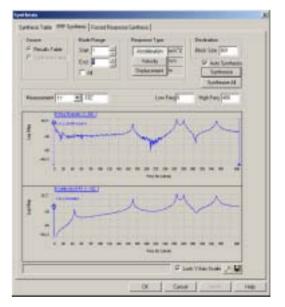
- Theoretical FE analysis
 - Approximate theoretical method
 - Accuracy always should be questioned
 - Validation is important consideration

or

Experimental modal analysis

- Accurate since based on measured not predicted behaviour
- Design/troubleshooting tool
- Validation tool for FE
- restriction the physical structure must exist

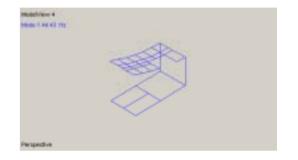
or

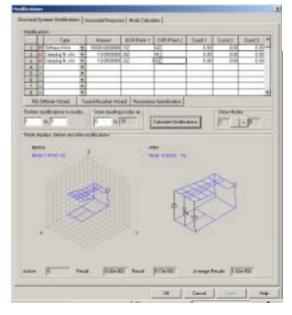

Both (complementary tools)

Design stage FE analysis \rightarrow manufacture prototype \rightarrow experimental modal analysis \rightarrow modal model \rightarrow verification or structural modification within modal model \rightarrow structural modification of prototype \rightarrow FINAL STRUCTURE

Modal testing: step details

- 5 main steps:
 - (1) MODEL creation of the structure
 - Points, lines and surfaces used to define the shape of an object
 - (2) MEASUREMENTS acquire the data
 - Driving point DOF (may be more than one)
 - Response (3 DOF multi-point)
 - (3) ANALYSIS analyse the data
 - Frequency , identify peaks and curve fit, FRF synthesis





Modal testing: step details

 (4) RESULTS – synthesis of mode shapes time domain animation

- (5) MODIFICATIONS modify the structure
 - To simulate the effects of a structural modification
 - Mass, stiffness, damping

Applications to Advanced LIGO

- Suspension design:
 - 1) Support structures (1st mode <150Hz?)
 - 2) Cantilever blades (internal modes)
 - 3) Other substructures e.g. tablecloth modes
- Other:
 - 1) Optics table
 - 2) Silica/sapphire mirror substrates (thermal noise predictions)
 - 3) Silica fibres/ribbons

The task in hand

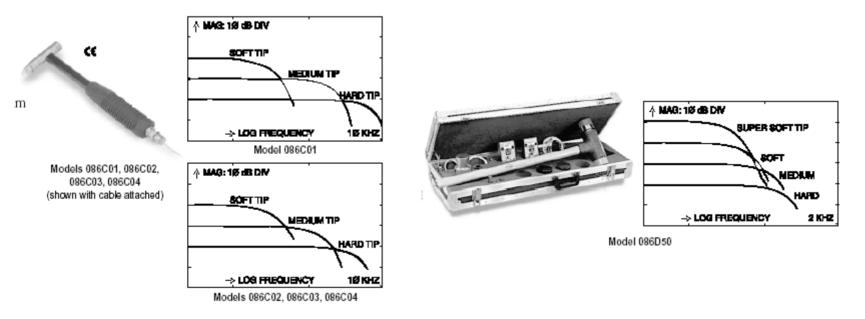
- Source suitable equipment for proposed 'Modal Testing Facility' for Advanced LIGO
- Three equipment functions to consider in the process of modal testing:
 - Excitation method
 - Response measurement method
 - Data acquisition & analysis software

Requirements for the various applications

Applications	Requirements				
	Excitation Method		Response Measurement Method		Data
	CONTACT (shaker or impact hammer)	NON- CONTACT (acoustic or electrostatic)	CONTACT (accelerometers)	NON- CONTACT (laser vibrometer)	Acquisition & Analysis Software
Suspension support structures	•		•	•	Rule of thumb – don't overspecify
Cantilever blades	•		(•)	•	
Mirror substrates		•		•	
Silica ribbons/fibres		•		•	

Contact excitation

- Mechanical shaker
 - White noise
 - wide range of frequencies
 - Sinusoidal testing
 - sweep through frequency until hit resonance test at this frequency
- Impact hammer
 - Impulse response
 - frequency range depends on properties of hammer tip so choose the tip for the application
 - hard tip (high frequency modes)
 - soft tip (low frequency modes)


Non-contact excitation

- Electrostatic
 - Swept sine
 - Currently used to locate modes on mirror substrates and then perform Q measurements (ringdown)
 - White noise
- Acoustic
 - White noise
 - would work for ribbon/fibre excitation (limited to measurements in air only)

Impact hammers

Impact Hammers

- PCB Impact Hammers by Techni measure
- instrumented hammers for measuring the force input during modal impact testing. Kits which include power supplies, two accelerometers and cabling, are also supplied.
- General purpose hammer kit £2.5K
- Sledge hammer kit £3.5K



Response measurement

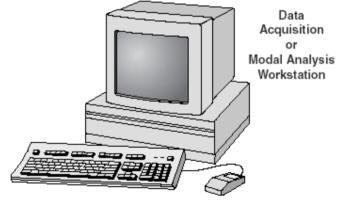
- Accelerometers (contact)
 - Two main types
 - (Capactive simple battery hookup static acceleration measurement)
 - Piezoelectric ICP charge output (integrated circuit piezoelectric) with built-in signal conditioning
 - e.g. ICP structural test / array accelerometers (PCB 333 series)
 - Lightweight for multi-point modal and structural testing
- Laser systems (non-contact)
 - Laser vibrometer Doppler effect
 - 1D basic
 - 3D measures shear from perpendicular offset
 - Scanning precision applications
 - Lambda Photometric (Polytec)

Laser Vibrometer

• 1D general purpose use ~ £28K

OFV-3001 controller with OFV-303 standard optics head

 3D contains 3 independent laser Doppler sensors in one common optical head ~ £32K



OFV-3001 3D laser vibrometer controller and optics

Data acquisition and analysis

- Data acquisition
 - Dual channel (~£15K)
 - Larson Davis FFT analyser
 - Multi-channel (x few £10K's)
 - Zonic data acquisition system
- Data analysis software
 - STAR6 modal simple, PC basec user friendly (<£11K)
 - IDEAS advanced (x few £10K's)
 - LMS -advanced (x few £10K's)

- Testing time is not a major consideration.
 Facility required intermittently.
- OPTION '1'
 - Impact hammer kit. ICP accelerometers with dual channel Larson Davis. STAR6 modal analysis software mounted on available PC (~£23K to ~£31K depending on STAR6 edition)
- OPTION '2'
 - Impact hammer kit. Dual channel Larson Davis with 1D laser vibrometer with STAR6 modal on available PC (~£49K to ~£57K depending on STAR6 edition).
- Laser vibrometer modal tests will be starting soon at Glasgow.

Next steps

- Feedback from this discussion
- Detailed prices
- Final recommendations to follow