Update on eddy-current damping experiments

Mike Plissi Institute for Gravitational Research University of Glasgow LIGO-G030453-00-Z

Outline of talk

- Motivation for eddy-current damping
- Description of Glasgow experimental set-up
- Experimental results with comparison to MATLAB models
- Conclusions from ECD experiments
- Extension to Quadruple pendulums
- Further developments

Motivation

- Advanced LIGO suspensions have more stringent requirements on local control sensor noise
- Investigation of passive damping scheme:
 Eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums
- Research program was set up to test eddy-current damping of a triple pendulum suspension in Glasgow

Background

- A magnet moving inside a non-magnetic conductive tube has its motion retarded
- Retardation force is proportional to velocity of magnet- viscous damping
- Effectiveness of eddy current damping depends on the resistance of the current paths in the conductive material
 - Select high conductivity material in order to improve the damping --> Copper is the best choice from a performance/cost standpoint

Schematic of Glasgow prototype suspension:

(IGR)

Eddy Current Damping Tests at Glasgow

- Set up on Glasgow prototype triple pendulum
- Two 4x4 NdFeB magnet arrays mounted on uppermost mass for investigating vertical and longitudinal damping
- Magnet array moves within Cu block with corresponding array of holes

Final Set-up: Accelerometers in place

- Each actuator is connected up to an individual driver
- Two accelerometers used in the test: one on the upper mass, the the other on the support structure ('ground')

Vertical Damping test

 First eddy current damper installed above upper mass

Vertical transfer function

Experimental results

GIGIC

MATLAB Model

Upper peak: Two modes close together (vertical and pitch)

Longitudinal transfer function

Blue curve-undamped response Green curve-damped response (b~6 kg/s)

Experimental results

MATLAB Model

GIGR

Conclusions from ECD experiments

- A damping constant of 5.4±0.5 kg/s (for a single array) was estimated fom these results
- This compares favourably to the value calculated from basic theory (assuming that the wall thickness is thin compared to the other radial dimensions)
- First results + modeling indicate triple pendulums can be adequately damped using eddy currents
 - modecleaners with single arrays
 - heavier recycling mirrors with ~ 3 such arrays
- Quadruple pendulum requires damping force ~ 25 times a single array

ECD of Quadruple Pendulum

Diagrams from C Torrie /M Perreur-Lloyd

VTF and Impulse Response with ECD (2 units)

Decay time to 1/e: ~80 secs

Norna Robertson

(IGR)

Further developments:

- Mounting magnets on support will reduce potential coupling to external magnetic fields (earth's field and other fields eg. from isolation table actuators)
- Optimise geometry of magnet array/copper block to:
 - Minimise excess mass of copper material in block (important consideration for quad suspension)
 - Allow accurate alignment of Cu unit/magnet array

Revised lightweight design with adjuster

2x2 array eddy current damper assembly- for a single pendulum test suspension at CALTECH

Calum Torrie, Mark Barton

