

medNoiseChar: Assessing LIGO Data Stationarity

Lee Samuel Finn Center for Gravitational Wave Physics, Penn State

LIGO-G030420-00-Z

8/22/03

Introduction

- Problem:
 - » Well-behaved detector has stationary noise, calibration
 - » Data analysis methods rely on stationarity of noise, calibration
 - » How to assess, monitor calibration, noise stationarity?
- medNoiseChar
 - » Monitors variation of three measures of detector noise statistics and identifies approximately stationary noise segments
- Outline
 - » Characterizing detector noise
 - » Monitoring stationarity
 - » Identifying stationary epochs
 - » A look at S2 stationarity

Basic Idea

- Identify interesting, relevant measures of detector noise statistics
 - » E.g., mean, variance in particular band
- Evaluate statistic periodically
 - » E.g., on consecutive 16s intervals
- Is measurement on current segment consistent with measurement on previous segment? With measurement on past several segments?
 - » Each measurement is an estimate: consistency is a test based on distribution of errors associated with each measurement
- Stationary epoch: longest set of consecutive intervals whose statistics are "consecutively consistent"

Characterizing detector noise

- Central tendency
 - » E.g., mean
- Dispersion
 - » E.g., variance
- "Gaussianity"
 - » E.g., $\chi 2$ fit to Gaussian
- Problem: Detector noise shows strong, rapid variation in sample distribution wings
 - » Timescale: seconds or less
 - » Wings: 2-3 σ
 - » Variability: strong, asymmetric departures from Gaussianity apparent in mean, dominate variance

Same mean, variance; different χ^2 fit to Gaussian

LIGO-G030420-00-Z

Characterizing detector noise

- Focus on distribution mass, not outliers
 - » Rank order N samples per averaging time
 - » Drop first, last pN samples
 - These are the outliers

 - » Measures are resistant to changes in outliers
- [5,95] percentile cut
 - Reduces variability in dispersion on 16 s intervals by > factor 30 on typical segment
- Caveat: *musn't ignore outlier variability*
 - » But that's a different study

	$\sigma_{v} / < \sigma_{v} >$	$\sigma_v / < \sigma_v >$
		[5,95]
Gaussian noise	0.0063	0.0063
S2 data	1.8823	0.0414

Monitoring stationarity

- Focus on properties of truncated distribution estimated on consecutive data segments
 - » E.g., consecutive 16s intervals
- Mean
 - » N samples: error bars (approximately) proportional to standard error of mean ($\sigma/N^{1/2}$)
 - » Compare to last interval mean, accumulated mean since epoch start
- Variance
 - Ratio of two variance estimates from same distribution follow *f*-distribution (depends on number of samples in each estimate)
 - » Compare current variance estimate to last estimate, accumulated estimate since epoch start
- "Gaussianity"
 - » Ratio of two χ^2 quality of fit to model distribution follow *f*-distribution (depends on number samples in each estimate)
 - » Compare current fit quality to last

LIGO-G030420-00-Z

Choices

- Band
 - » Focus attention on band $[f_l, f_h]$
- Averaging time
 - » Interval duration $\boldsymbol{\tau}$ on which statistics are accumulated
- Percentile cut
 - » Define bulk distribution by throwing out top, bottom p percentile of band-limited samples
- Number of bins for χ^2 fit to Gaussian
 - » Bins chosen for constant probability per bin
- Stationarity criteria
 - » Stationary epoch ends immediately before first of two consecutive intervals that are inconsistent (probability p) in either mean or variance with epoch cumulative mean, variance

LIGO-G030420-00-Z

Sample output: monitoring stationarity

8/22/03

Sample output: stationary epochs

LIGO-G030420-00-Z

Penn State CGWP

Anecdotal look at S2: Longest triple science mode segment

Penn State CGWP

LIGO-G030420-00-Z

L1 Stationarity Monitor: Longest Triple Science Mode

8/22/03

H1 Stationarity Monitor: Longest Triple Science Mode

LIGO-G030420-00-Z

H1 Cuts: Longest Triple Science Mode

8/22/03

H2 Stationarity Monitor: Longest Triple Science Mode

LIGO-G030420-00-Z

LIGO-G030420-00-Z

H1 & H2: Contrast

LIGO-G030420-00-Z

Stationary Epoch Durations

- [550 Hz, 590 Hz]
- 16 s averaging time
- [5, 95] percentile cut
- 97.5% confidence stationarity criteria

Stationary Epoch Durations

8/22/03

Summary

- S2 noise shows *strongly variable, frequent outliers*
 - » Trimming samples outside of [5,95] percentile on 16s data in [550,590] Hz band reduces range of variance by factor 35 or more
- S2 noise shows *strong variability on minute* timescales
 - » 50% of H2/L1/H1 *epochs* shorter than 64/96/144 s: expect median durations of ~750s for Gaussian stationary noise
 - » 50% of H2/L1/H1 *durations* in epochs shorter than 144/384/640 s: expect ~1780 s for Gaussian stationary noise
- Science results seriously affected by noise non-stationarity
 - » Sophisticated analyses can account for variability if not too rapid
 - » Greater, more rapid variability, weaker conclusions
- medNoiseChar available as Matlab script and as a standalone Ap that runs on frame data
 - » Same concepts being applied to calibration lines: cf. lineamp being developed by Mike Ashley