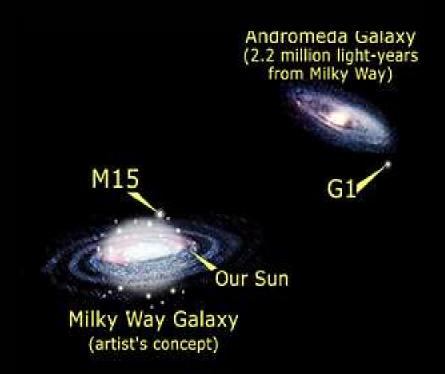
Possible Eccentric Black-hole Binary Mergers and their Implications to LIGO detections

Linqing Wen


Caltech LIGO

Outline

- Overview
 - Globular clusters
 - Binary black hole (BH) mergers

- Eccentricity evolution of merger systems under Kozai Mechanism
- Implications to LIGO GW detections

Globular Clusters

M_{BH}~4000 Msun 20,000 Msun (stolen from the STScI web site)

Globular Clusters

- Excellent birthplace for BH binaries
 - after 10⁷ yrs, > 20-25 Msun stars evolved into BHs:
 - BHs are the heaviest objects left
 2-body relaxation, energy equipartition, mass segregation:
 - BHs sink to the core
- BH binaries form in the core
 - 3-body relaxation process
- LIGO sources if merge within Hubble time

Binary Merger Time Scale

$$\tau_{\rm GR} \approx 6 \times 10^{10} \frac{(a/{\rm AU})^4 (\epsilon/0.01)^{3.5}}{(m_0 + m_1)m_0 m_1/M_{\odot}^3}$$
 yr,

- * a: semi-major axis, $\varepsilon = 1-e^2$, m_0 , m_1 : masses
- * quadrupole approximation for gravitational radiation
- * Need to reduce a or ϵ to have T_{GR} < Hubble time

Will BH Binaries Merge within GCs?

- Binary-single interaction
 - throws out most BH binaries
 - ~ 8 % retained within lifetime
 - recoil velocity associated with hardening
 - major contribution to current BH-BH merger even rate
- Binary-binary interactions
 - produce hierarchical triple systems
 - ~ 20-50 %
- Kozai mechanism in triple systems
 - drives inner binaries to extreme eccentricity
 - shortens T_{GR}
 - ~70 % inner binaries could merge successfully
 - » before interrupted by interactions with field stars
 - » potentially important LIGO sources
 - Subsequent merger ==> formation of Intermediate mass BHs
 (Miller & Hamilton 2002)

Kozai Mechanism

Operate in hierarchical Triple systems (r₂>> r₁)

(Kozai 1962)

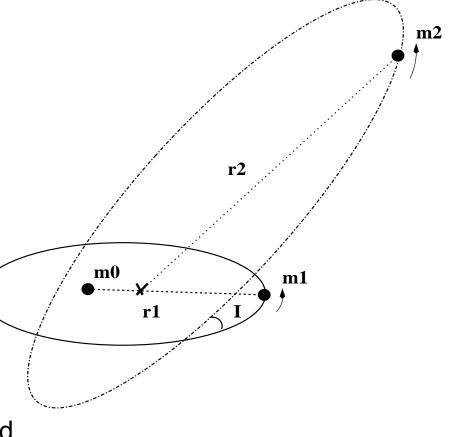
Orbital averaged perturbation

• $H=H_0+H_1'+H_2'$

Equations of motion

T_{evol} >> P_{orb}

Oscillation of e₁ and g₁ w/ t


• extreme e_1 for $l_0 \sim l_c$

• e = 1 in classical limit

a₁, a₂, e₂ fixed

 $(E_{1,2}, |J_2| conserved)$

 Cyclic exchange of angular momentum between inner and outer binaries

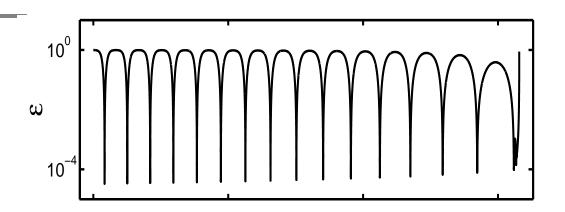
These merger systems are associated with extremely high eccentricities!

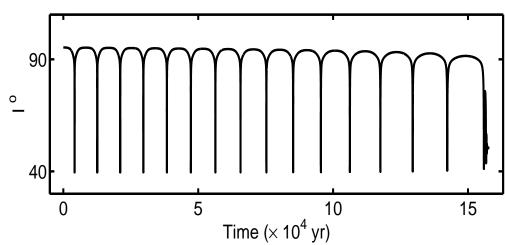
Why Study Eccentricities

- High e systems were not expected for LIGO detections
 - Gravitational radiation reaction is very efficient in circularizing the orbit
 - » e.g., Hulse Taylor NS-NS system
 - Current effort has been focused on GWs from circular orbits
- Circular templates might not be good enough for optimal detections of high -e systems
- Eccentricity distribution of these systems in LIGO band

Our Work

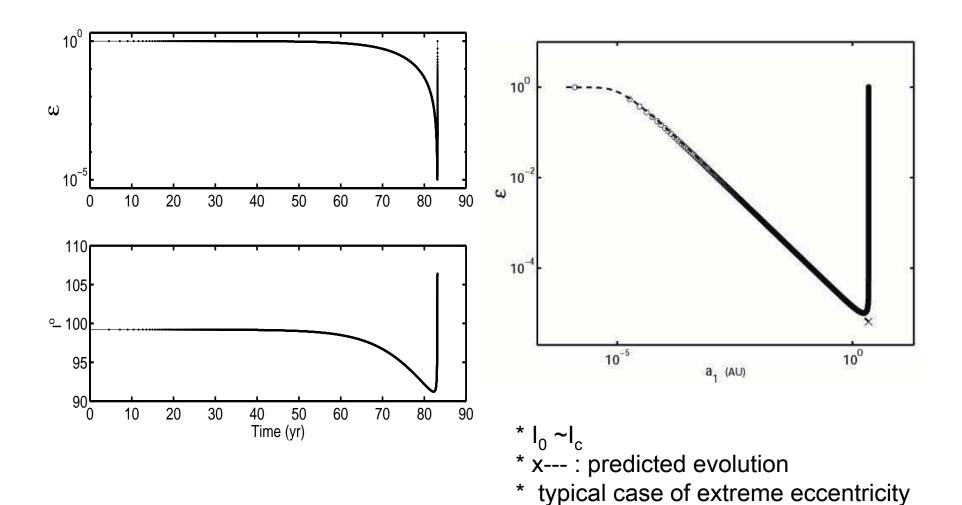
- Study evolution of individual system
 - equations of motion, estimate ε_{min}
 - $f_{GW}^{m} \sim (a\epsilon)^{-1.5}$
- Find parameter space for successful mergers
 - consider a, e0, a1,a2,I0, g10, m's
 - merge before disrupted by a field star
- Derive eccentricity distribution in LIGO frequency band
 - $f_{GW} = 10, 40, 200 Hz$


II. Evolution of Individual Triple System


Three competing effects

- Kozai Mechanism
 - · eccentricity enhancing
- Gravitational radiation reaction (GR effect)
 - extract energy and angular momentum
 - orbital decay
 - · circularizing
 - important near ε_{min} , negligible otherwise
 - rapid transition once GR effect dominates
- Post-Newtonian periastron precession (PN effect)
 - mess up the phase relation
 - introduce fast oscillations to destroy Kozai cycle

I: Merge after many Kozai cycles


- Integrated from the ODE equations
- Typical case that the PN effects dominates before the GR effect
- System spends most time at low eccentricities
- Gradual change in the beginning
- Fast oscillations by PN effects
- GR effect dominates near ε_{min}
- Fast transition

*
$$\varepsilon = 1 - e^2$$

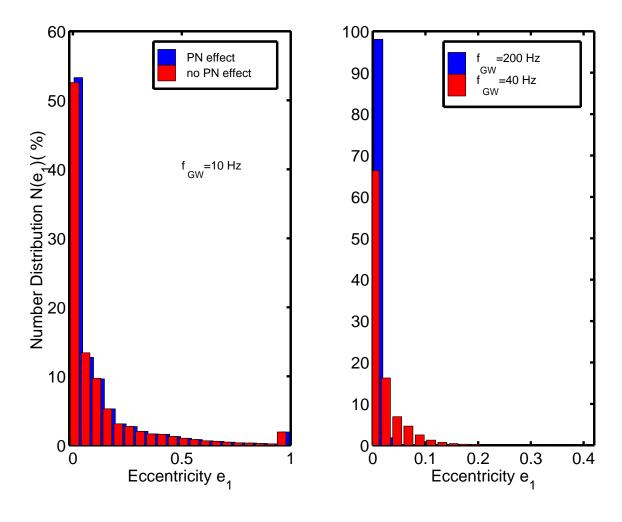
II. Merge within one Kozai cycle

Parameter Space

- mass: 10 M_{sun}
 - 3-20 Msun for known galactic stellar mass BHCs
- a₁ =0.2 30 AU
 - · lower limit: not kicked out of GC
 - higer limit: not disrupted by field stars
- $a_2/a_1 = [3,5,10,20,30]$
 - $a_2/a_1 > 3$: required by the stability of the triple system
- e_{10} , e_{20} = 0.01-0.901
- $g_{10}=0-90^{\circ}$, uniform I_0

Requirement for Successful Mergers

- * the system should have enough time to reach extreme eccentricity
- * merge should occur before the system is disrupted by encounters with field stars


$$au_{
m evol} < au_{
m enc}, \ rac{ au_{
m GR}(a_1, \epsilon_{
m min})}{\sqrt{\epsilon_{
m min}}} < au_{
m enc}.$$

The time scale for disruption (the same as the stellar encounter time scale) is given as

$$\tau_{\rm enc} \approx 6 \times 10^5 n_6^{-1} \frac{\rm AU}{a_2} \frac{10 M_{\odot}}{M_2} \text{ yr},$$

where the number of stars in the globular cluster is $N = 10^6 n_6$.

Conclusion

• At 10 Hz:

e >0.1 : 30 %,

e~1: 2 %

Eccentricity might be important for advanced LIGO

• At 40 Hz:

e<0.2

• At 200 Hz:

e<0.04

^{*} Consistent with e \sim f $^{\rm m}_{\rm GW}$ $^{-19/18}$

^{*} Eccentricity is probably irrelevant for initial LIGO for this type of mergers. But it might be important for advanced LIGO