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Outline

1. Gravitational waves and how to detect them
2. The new generation of interferometric 

detectors
3. Sample of first results 
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A set of freely-falling test masses
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How a gravitational wave 
affects a set of test masses

• Transverse
No effect along direction 

of propagation

• Quadrupolar
Opposite effects along x

and y directions

• Strain
Larger effect on longer 

separations

L
Lh ∆≡ 2
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Generators of gravitational waves

Binary stars (especially compact 
objects, e.g. neutron stars or black 
holes.)

Compact objects just after 
formation from core collapse.

Or anything else with a dramatic 
variation in its mass quadrupole 
moment, especially on msec scales.
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Science Goals

• Physics
– Direct verification of the most “relativistic” prediction of 

general relativity
– Detailed tests of properties of grav waves: speed, strength, 

polarization, …
– Probe of strong-field gravity
– Early universe physics

• Astronomy and astrophysics
– Abundance & properties of supernovae, neutron star 

binaries, black holes
– Tests of gamma-ray burst models
– Neutron star equation of state
– A new window on the universe
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Why gravitational wave 
detection is hard to do

A gravitational wave detector needs
– A set of test masses,
– Instrumentation sufficient to see tiny motions,
– Isolation from other causes of motions.

The challenge:
The best astrophysical estimates predict fractional 

separation changes of only 1 part in 1021, or less.
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Resonant detector

Cooled by liquid He (or dilution refrigerator).
rms sensitivity below 10-18 (now around 10-19)

A massive (usually aluminum) cylinder. Vibrating 
in its gravest longitudinal mode, its two ends are 
like two test masses connected by a spring.
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An alternative detection strategy 
using interferometry

Tidal character of wave argues for test masses 
as far apart as practicable. Free masses (in the 
form of pendulums), kilometers apart.
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Sense the motions of distant free 
masses with an interferometer

Michelson
interferometer
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Interferometer: a transducer from 
length difference to brightness

Wave from x arm.

Wave from y arm.
Light exiting from 
beam splitter.

As relative arm 
lengths change, 
interference causes 
change in 
brightness at 
output.
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An International Network of 
Interferometers

LIGO

Simultaneously detect signal (within msec)

detection 
confidence

locate the sources

decompose the 
polarization of 
gravitational 
waves

GEO Virgo
TAMA

AIGO
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Status of interferometer projects

Virgo (3 km, Cascina (Pisa), Italy):
Installation complete. Commissioning of full-length 

interferometer about to begin.
TAMA (300 m, Tokyo, Japan):

In operation, about 10x above design sensitivity. 
Excellent stability; coincident analysis with LIGO 
about to begin.

GEO (600 m, Hannover, Germany):
Taking data with LIGO while commissioning.

LIGO: subject of the rest of this talk
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LIGO Laboratory Sites

Hanford 
Observatory

Livingston
Observatory

Laser Interferometer Gravitational-wave Observatory (LIGO)
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LIGO Livingston Observatory
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LIGO Hanford Observatory
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GEO 600
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LIGO Beam Tube

• LIGO beam tube under 
construction in January 
1998

• 65 ft spiral welded 
sections

• girth welded in portable 
clean room in the field

1.2 m diameter - 3mm stainless
50 km of weld

NO LEAKS !!
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LIGO Vacuum Equipment
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A LIGO Mirror
Substrates: SiO2

25 cm Diameter, 10 cm thick
Homogeneity < 5 x 10-7

Internal mode Q’s > 2 x 106

Polishing
Surface uniformity < 1 nm rms
Radii of curvature matched < 

3%

Coating
Scatter < 50 ppm

Absorption <  2 ppm
Uniformity <10-3
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Core Optics
installation and alignment
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What Limits Sensitivity
of Interferometers? 

• Seismic noise & vibration 
limit at low frequencies

• Atomic vibrations (Thermal 
Noise) inside components 
limit at mid frequencies

• Quantum nature of light 
(Shot Noise) limits at high 
frequencies

• Myriad details of the lasers, 
electronics, etc., can make 
problems above these levels
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LIGO’s Recent History

Now

E2 E3 E4

S1 
Science 

Run

Washington
earthquake

First Lock
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Recombined Interferometer

Full Interferometer

Washington 2K
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Washington 4K

LHO 2k wire 
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S2 
Science 

Run
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LIGO’s First Science Run (S1)

• August 23 - September 9, 2002 (~400 hours)
• Three LIGO interferometers, plus GEO (Europe) and TAMA 

(Japan)
• Range for binary neutron star inspiral ~ 40-200 kpc
• Hardware reliability good for this stage in the commissioning

– Longest locked section for individual interferometer: 
21 hrs (11 in “Science mode”)

24%73%58%42%Duty cycle

3x Coinc.LHO-2KLHO-4KLLO-4K



14 July 2003. LNGS Search for Gravitational Waves with 
Interferometers

25

S1 Sensitivities
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S1 Noise Component Analysis, LLO 4k

G020482-00-D 5
Rana Adhikari noise analysis
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S1

6 Jan
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Searching for Astrophysical 
Gravitational Wave Signals

• Compact binary inspiral: “chirps”
– Search technique:  matched templates
– NS-NS waveforms are well described
– BH-BH need better waveforms   

• Supernovae / GRBs: “bursts”
– Search for unmodeled bursts
– Also search in coincidence with signals in electromagnetic 

radiation 
• Pulsars in our galaxy: “periodic signals”

– Search for observed neutron stars  (vs. frequency, doppler shift)
– Also, all-sky search (computing challenge)

• Cosmological Signals    “stochastic background”
– Correlate outputs of multiple interferometers
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Search for Inspirals

• Sources: Neutron star binaries
known to exist and emit gravitational waves (Hulse&Taylor).

• Analysis goals: determine an upper limit on the rate of binary 
neutron star inspirals in the universe.

– S1 range included Milky Way (our Galaxy) and LMC and SMC
– S2 range includes Andromeda
– For setting upper limits, must have (and use!) source distribution 

model
– Search for black hole binaries and MACHOs will be pursued in the 

future
• Search method: system can be modeled, waveform is calculable:

o

» use optimal matched
filtering: correlate
detector’s output with
template waveform
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Range for Binary NS

Images: R. Powell

S1 S2

DESIGN
GOAL

AdLIGO
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Inspiral Search Result

S1 result:
• No event candidates 

found in coincidence
• 90% confidence upper 

limit: inspiral rate < 
170/year per Milky Way 
equivalent galaxy, in the 
(m1, m2) range of 1 to 3 
solar masses.
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Bursts: A first search 
without electromagnetic triggers

• Sources: phenomena emitting short 
transients of gravitational radiation of 
unknown waveform 
(supernovae, black hole mergers).

• Analysis goals:
– Don’t bias search by use of particular 

signal models.
– Search in a broad frequency band.
– Establish bound on rate of instrumental 

events using triple coincidence 
techniques.
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Bursts

S1 Search methods:
– “SLOPE” algorithm (time domain) is an 

optimal filter for a linear function of time with 
a 610 µsec rise-time.

– “TFCLUSTERS” algorithm identifies regions in 
the time-frequency plane with excess power 
(threshold on pixel power and cluster size).

– Use time-shift analysis to estimate background 
rates, and Feldman-Cousins to set upper limits 
or confidence belts

– Use Monte-Carlo studies to determine 
detection efficiency as a function of signal 
strength and model
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TFCLUSTERS 

• Compute t-f spectrogram, in 1/8-second bins

• Threshold on power in a pixel; search for clusters of pixels

•Find coincident clusters in outputs of three LIGO interferometers


