

Progress Report: PSU S2 Burst Analysis

M. Ashley, B. Bongiorno, L. S. Finn, J. W. C. McNabb, E. Rotthoff, A. Stuver, T. Summerscales, P. Sutton, M. Tibbits

Introduction

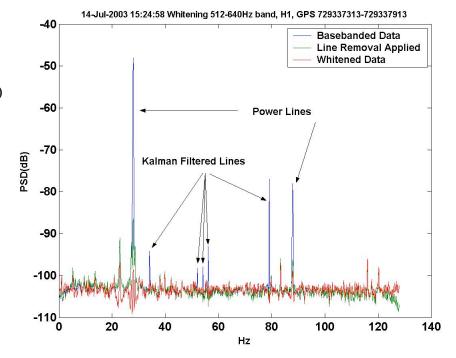
- Yes/No:
 - » Is the energy *distribution* of events at zero delay the same or different than the background event energy distribution?
- Interpreted rate/strength bound:
 - » Bound the contribution of a galactic distribution of, e.g., ms Gaussian sources in a rate/strength diagram to the zero-delay distribution
- Detection:
 - » Examine in detail all zero-delay events whose expected rate, based on the properties of the parameterized background distribution, is greater than once per year
- Spectral analysis:
 - » Identify and partition events into spectral types (i.e., looking at events that have the same distribution of signal energy as a function of frequency)
- Acoustic detector comparison:
 - » Is the energy distribution of events with measured energy in the 900 Hz -930 Hz band consistent or inconsistent with background?

Outline

- Introduction (Sam)
- Data conditioning (Tiffany)
- BlockNormal tuning and running (Amber)
- Coincidence (John)
- Simulations, including background estimation (Patrick)
- Statistics (Sam)

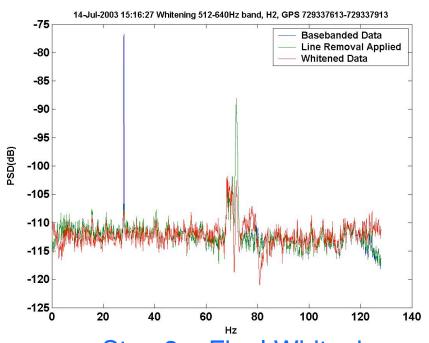
Data Preconditioning

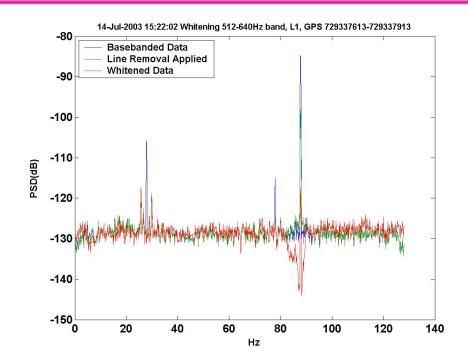
- Goal: Produce white data (data with equal power at all frequencies) for each frequency band of interest.
 - » Frequency bands: 128-192Hz, 192-320Hz, 384-512Hz, 512-640Hz, 704-1024Hz, 1024-2048Hz
- Step1 Basebanding
 - » cf. T030027
 - » Highpass filter for low frequency suppression chosen
 - Order 138, applied to all 3 detectors
 - » Lowpass filters to get rid of frequencies outside band.
 - Order 55, for 512-640Hz band
 - Order 31, for 384-512Hz band
 - Order 50, for 128-192Hz band
 - » Filters found via Matlab's remez function (Parks-McClellan)



Data Preconditioning

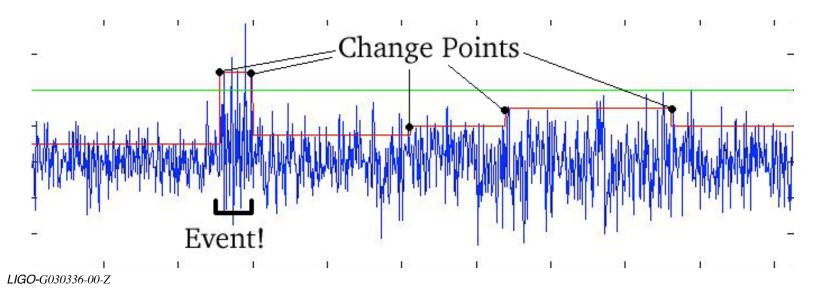
- Step 2 Line Removal, (ex. 512-640 Hz)
 - » Power lines regressed from data using voltmeter channels
 - Voltmeter data filter found with ARX model:


$$y(t) = b1 \square u(t \square k) + ... + bn \square u(t \square k \square n) + e(t)$$


- Filters found for each playground segment. Filter from nearest playground segment used.
- H1 H0:PEM-LVEA2_V1
- H2 H0:PEM-LVEA2_V3
- L1 L0:PEM-LVEA_V1 -Unsatisfactory, investigating other channels suggested by Rana
- » Other narrow lines removed via Kalman filtering
 - Kalman action rmvm available in datacondAPI
 - Process noise (line power) must be measured for each line.
 - Process noise measured for each playground segment

Data Preconditioning

- Step 3 Final Whitening
 - » Whitening filters generated for all playground segments. Nearest playground's filter used.
 - Order 60 AR model used


$$y(t) + a \operatorname{1} y(t + a + a \operatorname{1} y(t + a a + a a + a a a)$$

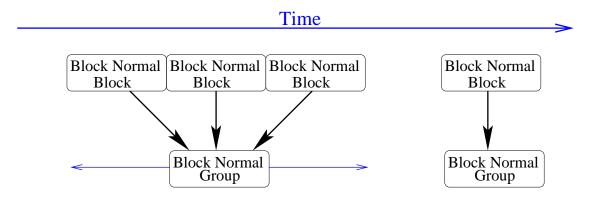
Jul-15-03 Penn State 6

BlockNormal ETG

- Change points based on statistical changes (\square^2,μ)
- Change points are not events!
- Change points form 'blocks' of data
- Thresholded blocks form single IFO events

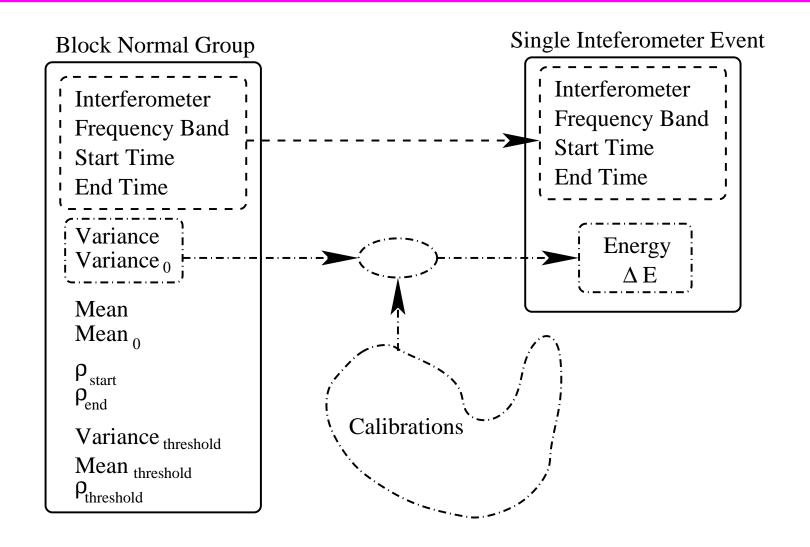
Threshold Tuning Objectives

- Change point threshold
 - » IFO/band change point rate inversely proportional to in-band noiseequivalent strain
- Block threshold (for fixed change point threshold)
 - » Maximize number of events per unit time
 - » Minimize event duration
- Fix expected triple coincidence change point rate

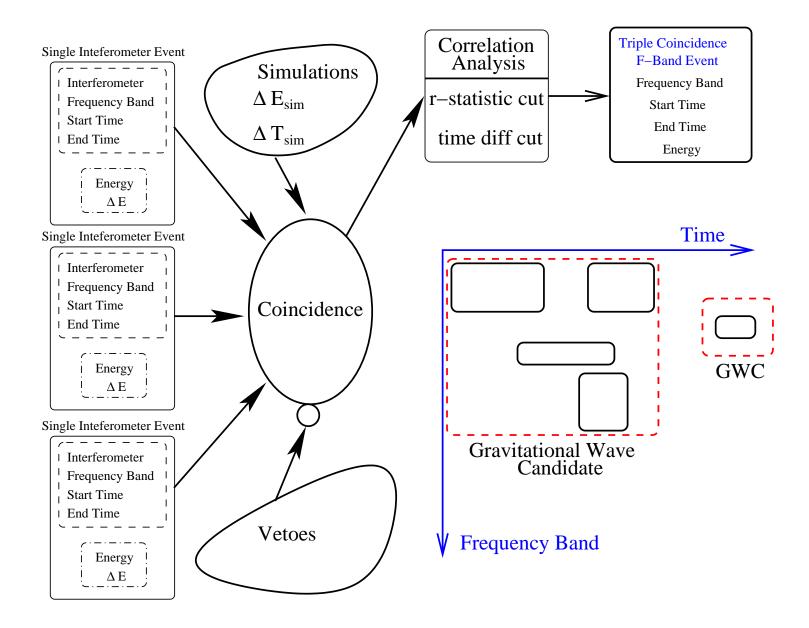

Where we are...

- BlockNormal
 - » coded and in LAL
 - » has own LDAS database table
- Tuning underway

Coincidence


- Block Normal Trigger to Single Interferometer Event:
 - Cluster Neighboring Blocks into Group

- Convert Block-Normal's variance into Single IFO Event calibrated Energy
- Select Gravitational Wave Candidates based on Timing and Energy Coincidences
- Perform Correlation Analysis
 (r-statistic, refined timing difference)



Coincidence

Coincidence

Background Determination

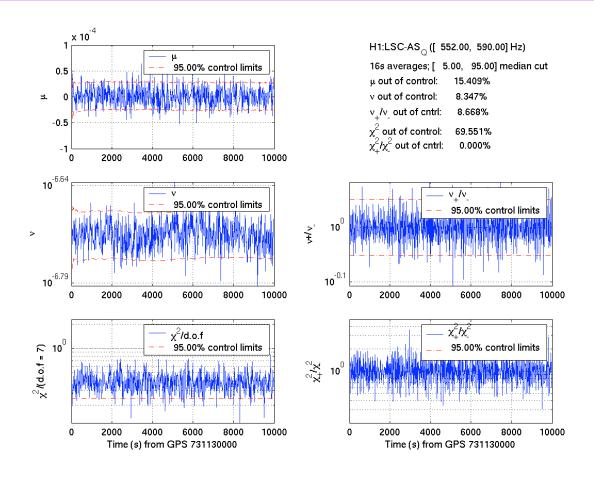
- Repeat coincidence tests with artificial time delays.
- Determining time delays is a critical issue.
 - » Must be larger than detector auto-correlation time and event clustering time, less than longest timescale on which any IFO is stationary.

Simulations: Goals

- Tolerance for coincidence tests:
 - » Start time
 - » Energy
 - » r-statistic (coordinate with Cadonati).
- Astrophysical interpretations:
 - » Detection efficiency.
 - » Spectrum determination (for additional cut).
 - » Foreground distribution (rate versus energy).
 - » Compute for specific source and population models.

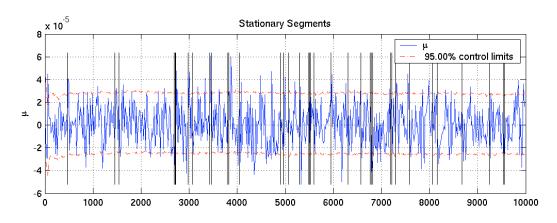
Simulations: Types

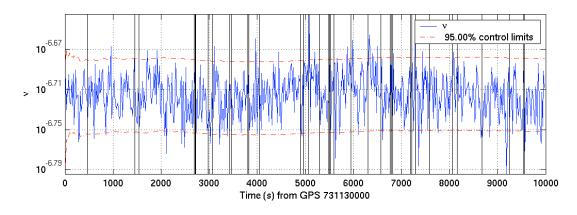
- Axisymmetric sources (linear polarization):
 - » Use single–IFO simulations with "zenith injections".
 - » Convolve results with population model for efficiencies.
 - » Simulations on playground for coincidence parameters; simulations on non-playground data for astrophysical interpretations.
 - » Compare to hardware injections for verification of procedure.
- Non-axisymmetric sources (general polarization):
 - » Use sky position and orientation (full source model) in the injections, therefore coordinated injections in each IFO.
 - » For astrophysical interpretations (non-playground data only).



Statistical Methods

- Analysis on stationary sub-segments
 - » Identify noise/calibration stationary sub-segments and evaluate joint likelihood based on separate analysis in each
 - » Cf. T030119-00-Z for quantitative method for identifying stationary sub-segments
 - » Cf. T030090-00-Z for method by which analyses on stationary subsegments are combined
- Identification of stationary sub-segments
 - » Form cumulative mean, variance, □² fit to normal distribution formed on short intervals (e.g., 16s)
 - Work only with samples in [5, 95] percentile range to reduce sensitivity to outliers
 - » Mark segment end when interval mean, variance is inconsistent (at 95% conf.) with cumulative quantities twice in a row




medNoiseChar: Stationary Segment Identification

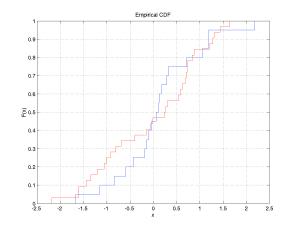
medNoiseChar: Stationary Segment Identification

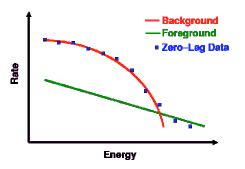
This example:

- » 16s averaging interval
- » ID'd 38 stationary segments
- » median duration 208s
- » average duration 262s
- » duration < 64s: 26%</p>
- Open Issue: choice of averaging interval

Statistical Methods

Yes/No:


» Mann-Whitney statistic or K-S decides whether two sample sets are from same or different distributions


Interpreted rate/strength bound:

» Bound the contribution of a galactic distribution of, e.g., ms Gaussian sources in a rate/strength diagram to the zero-delay distribution

Detection:

- » background analysis of # vs. energy determines energy above which fake triples are rarer than, e.g., 1/y.
- » Carry-out detailed analysis of any/all zero-delay triples that are rare by this criteria.

Statistical Methods

- Spectral analysis:
 - » ID spectral types (similar energy distribution in time, band)
 - » Yes/No analysis on spectral types
- Operation Roman Candle:
 - » ID all events with energy in 900 930 Hz band
 - » Yes/No analysis on these events

Jul-15-03 Penn State 20