

Initial LIGO Commissioning and First Observations

Stan Whitcomb

NSF AdvLIGO Review

Caltech

11 June 2003

Commissioning History

Strain Sensitivity for the LLO 4km Interferometer

First Science Run (S1)

- August 23 September 9 (~400 hours)
- Three LIGO interferometers, plus GEO (Europe) and TAMA (Japan)
- Hardware reliability good for this stage in the commissioning
 - » Longest locked section for individual interferometer:21 hrs

	LLO-4K	LHO-4K	LHO-2K	3x Coinc.
Duty cycle	42%	58%	73%	24%

LIGO

Astrophysical Searches with S1 Data

- Compact binary inspiral: "chirps"
 - » NS-NS waveforms are well described
 - » BH-BH need better waveforms
 - » search technique: matched templates

- Supernovae / GRBs: "bursts"
 - » burst signals in coincidence with signals in electromagn
 - » prompt alarm results in final stages

- Pulsars in our of preparation
 - » search for observed neutron stars (frequency, doppler shift)
 - » all sky search (computing challenge)
 - » r-modes

Compact Binary Coalescence

- Discrete set of templates labeled by (m1, m2)
 - » 1.0 Msun < m1, m2 < 3.0 Msun</p>
 - » 2110 templates
 - » At most 3% loss in SNR

- » Search: <u>matched templates</u>
- Neutron Star Neutron Star
 - waveforms are well described
- » Black Hole Black Hole
 - need better waveforms

Results of S1 Inspiral Search

Simulated Galactic Population

- Population includes Milky Way, LMC and SMC
- LMC and SMC contribute~12% of Milky Way

LIGO S1 Upper Limit R < 160 / yr / MWEG

- » Japanese TAMA → F
- R < 30,000 / yr / MWEG

» Caltech 40m →

- R < 4,000 / yr / MWEG
- Theoretical prediction
- $R < 2 \times 10^{-5} / yr / MWEG$

Detectable Range for S2 data will reach Andromeda!

Burst Sources

- Known sources -- Supernovae & GRBs
 - » Coincidence with observed electromagnetic observations.
 - » No close supernovae occurred during the first science run
 - » Second science run We are analyzing the recent very bright and close GRB030329

NO RESULT YET

» Emission of short transients of gravitational radiation of unknown waveform (e.g. black hole mergers).

'Unmodelled' Burst Search

GOAL search for waveforms from sources for which we cannot currently make an accurate prediction of the waveform shape.

Determination of Efficiency

Detector efficiency vs amplitude, average over sources. GA tau=1.0ms

To measure our efficiency, we must pick a waveform.

1ms Gaussian burst

Upper Limit1ms gaussian bursts

Result is derived using 'TFCLUSTERS' algorithm

Upper limit in <u>strain</u> compared to earlier (cryogenic bar) results:

- IGEC 2001 combined bar upper limit: < 2 events per day having h=1x10⁻²⁰ per Hz of burst bandwidth. For a 1kHz bandwidth, limit is < 2 events/day at h=1x10⁻¹⁷
- Astone et al. (2002), report a one sigma excess of one event per day at strain level of h ~ 2x10⁻¹⁸

Periodic Sources

- Pulsars in our galaxy:
 - » search for observed neutron stars
 - » all sky search (computing challenge)
 - » r-modes

- Frequency modulation of signal due to Earth's motion
- Amplitude modulation due to the detector's antenna pattern.

Directed Search in S1

NO DETECTION EXPECTED

at present sensitivities

Predicted signal for rotating neutron star with equatorial ellipticity $\varepsilon = \delta I/I : 10^{-3}$, 10^{-4} , 10^{-5} @ 8.5 kpc.

PSR J1939+2134 1283.86 Hz

Two Search Methods

Frequency domain

- Best suited for large parameter space searches
- Maximum likelihood detection method + frequentist approach

Time domain

- Best suited to target known objects, even if phase evolution is complicated
- Bayesian approach

First science run --- use both pipelines for the same search for cross-checking and validation

Results: PSR J1939+2134

- No evidence of continuous wave emission from PSR J1939+2134.
- Summary of 95% upper limits on h:

<u>IFO</u>	Frequentist FDS	Bayesian TDS
GEO	(1.94±0.12) x 10 ⁻²¹	$(2.1 \pm 0.1) \times 10^{-21}$
LLO	(2.83±0.31) x 10 ⁻²²	$(1.4 \pm 0.1) \times 10^{-22}$
LHO-2K	(4.71±0.50) x 10 ⁻²²	$(2.2 \pm 0.2) \times 10^{-22}$
LHO-4K	(6.42±0.72) x 10 ⁻²²	$(2.7 \pm 0.3) \times 10^{-22}$

Best previous results for PSR J1939+2134:

$$h_o < 10^{-20}$$
 (Glasgow, Hough et al., 1983)

Early Universe stochastic background

'Murmurs' from the Big Bang

Stochastic Background

 Strength specified by ratio of energy density in GWs to total energy density needed to close the universe:

$$\Omega_{GW}(f) = \frac{1}{\rho_{critical}} \frac{d\rho_{GW}}{d(\ln f)}$$

Detect by cross-correlating output of two GW detectors:

LIGO

Preliminary Limits: Stochastic Search

Interferometer Pair	90% CL Upper Limit	T _{obs}
LHO 4km-LLO 4km	$\Omega_{\rm GW}$ (40Hz - 314 Hz) < 72.4	62.3 hrs
LHO 2km-LLO 4km	$\Omega_{\rm GW}$ (40Hz - 314 Hz) < 23	61.0 hrs

- Non-negligible LHO 4km-2km (H1-H2) instrumental cross-correlation; currently being investigated.
- Previous best upper limits:

Measured: Garching-Glasgow interferometers :
$$\Omega_{GW}(f) < 3 \times 10^5$$

» Measured: EXPLORER-NAUTILUS (cryogenic bars): $\Omega_{GW}(907Hz)$ < 60

Stochastic Background sensitivities and theory

S1 Noise Component Analysis, LLO 4k

Estimated Noise Limits for S2 (as planned in October 2002)

Strain Sensitivity for the LLO 4km Interferometer

Changes Between S1 and S2

Digital Suspensions installed on LHO-2K and LLO-4K

- » New coil drivers & realtime control code for suspensions
- » Lower noise, switchable dynamic range (200 mA acquisition, 5 mA running)
- » Separate DC biases for alignment
- » Better filtering, diagonalization and control/sequencing features

Optical lever improvements

- » Structural stiffening (designed for thermal/kinematic stability, not low vibration)
- » Improved filtering to take advantage of reduced resonances
- » Pre-ADC "whitening" for improved dynamic reserve

More Power

- » Enabled by better alignment stability
- » Also required control of "I-phase" photocurrent (overload)
- » Now ~ 1.5 W into mode cleaners, ~ 40 W at beamsplitter (R~40)
- » Only 10-20 mA average DC photocurrent at dark ports !! (optics very good)

LIGO

Second Science Run (S2)

- February 14 April 14, 2002 (~ 1400 hours)
- Three LIGO interferometers and TAMA (Japan)
- Steady improvement in sensitivity continues
 - » Approximately 10x improvement over S1
- Duty cycle similar to S1
 - » Increased sensitivity did not degrade operation
 - » Longest locked stretch ~ 66 hours (LHO-4K)

	LLO-4K	LHO-4K	LHO-2K	3x Coinc.
Duty cycle (cf. S1)	37% (42%)	74% (58%)	58% (73%)	22% (24%)

Stability improvements for S2

- Wavefront sensing (WFS) for alignment control
 - » Uses the main laser beam to sense the proper alignment for the suspended optics
 - » Complex! 10 coupled degrees of freedom,
 - Sensing degrees-of-freedom different from control degrees-of-freedom
- S1:
 - » All interferometers had 2 degrees-of-freedom controlled by WFS
- S2:
 - » LHO-4K: 8 of 10 alignment degrees-of-freedom under feedback control
- •Now:

»All 10 degrees-of-freedom controlled by WFS

Virgo Cluster

S2 Sensitivity and Stability

Major On-going Commissioning Activities

- Seismic retrofit at LLO
- Finish wavefront sensing alignment system
- RFI cleanup, linear power supplies
- Shot noise sensitivity
 - » Thermal lensing
 - » Increase of number of photodiodes
- Acoustic coupling
- Numerous smaller tasks

Seismic Isolation Upgrade

The Seismic Isolation System at LLO needs to be upgraded

- » Seismic noise environment much worse below 10 Hz than originally planned (logging largest factor, but also train, other anthropogenic noise)
- » Plan is to add an active, external pre-isolation (EPI) stage without disturbing the alignment of the installed optics

Current Plan:

- » Continue prototype testing at MIT, including testing VME based controls
- » Review held for 4/18; management decision on how to proceed pending
- » Order components, fabricate and assemble; fabrication/assembly phase lasts ~5.5 months
- » Installation starts ~Jan '04 and should complete ~Apr '04

Seismic Isolation Testing at MIT

Hydraulic External Pre-Isolator (HEPI)

electro-Magnetic External **Pre-Isolator (MEPI)**

'DRAULIC TUATOR PRIZONTAL)

Shot Noise Sensitivity

- Simplistic power calculations suggests factor of ~2 shortfall
 - » 10x increase in laser power would give factor~3 improvement
- Does not take improved sideband efficiency into account

LIGO

Optical characterization

- Good news: optics quality is (almost all) good
 - » Recycling gain meets or exceeds goals (design was >30)
 - LLO-4K: Gain of nearly 50 seen, more usually about 45
 - LHO-4K: Gain of 40-45
 - » Contrast defect meets or exceeds goals (design was < 10⁻³)
 - LLO-4K : $P_{as}/P_{bs} = 3 \times 10^{-5}$
 - LHO-4K : $P_{as}/P_{bs} = 6 \times 10^{-4}$
 - » LHO-2K: Cause of low recycling gain (20) discovered
 - Bad AR coating on ITMX, must be replaced has been
- Low RF sideband gain/efficiency
 - » LHO-4K : Sideband power efficiency to AS port: ~6%
 - » Cause: thermal lensing in the ITMs isn't at the design level
 - » Achieving shot noise goal requires that this be fixed

Thermal Lensing

RF sideband efficiency is low

- » Power recycling cavity slightly unstable: lack of Input Test Mass (ITM) thermal lens makes $g_1 \cdot g_2 > 1$
- » Recycling Mirror (RM) curvature relies on point design for thermal lensing
- » Heating differs from design value

Possible solutions

- » Change RM (w/ new radius of curvature); 6 month lead time
- » Add the missing heat to ITMs with another source (AdvLIGO or GEO technique)
- » Pursued in parallel with other commissioning activities

ITM Heating

Bad mode overlap

DC (carrier)

RF sidebands

Acoustic Peaks: Scattering/clipping

- Peaks occur in 80-1000 Hz band, at 10-100x required level
- Source for LHO correlated noise (stochastic search)
- Investigating:
 - » Acoustic isolation improvements
 - » Modify output periscopes/mirror mounts: stiffer, damped
 - » Active beam direction stabilization
 - » Eliminate electro-optic shutters

Acoustic Excitations

LIGO

Summary

- Commissioning of detectors progressing well
 - » Steady progression on all fronts: sensitivity, duty cycle, stability, ...
 - » Next Science Run: Nov 2003 Jan 2004
- First Science analyses underway
 - » S1 results demonstrate analysis techniques, S2 data (and beyond) offer a real possibility to detect gravitational waves
 - » Developing synergy between detector commissioning and data analysis efforts
 - » Four analysis papers (and one instrumental one...) in final stages of preparation
- Design performance (both sensitivity and duty cycle) should be achieved next year
 - » Still a lot to do, but no showstoppers