High Frequency

Francesco Fidecaro, Pisa

Aspen, February 2003

LIGO-G030202-00-

Why listen to higher frequency?

Higher frequencies: shorter wavelength, more details from the source But: size of a compact source ~ 2GM If surface rotates at c Max frequency f ~ $1/4\pi GM$ ~ 10^4 M_{\odot}/M Hz

Going higher will avoid eventually astrophysical sources
Cosmological red shift pushes source frequency down
Listening further away increases the number of sources
leading to an astrophysical background (Olbers...)
D Blair et al, V Ferrari et al, K Postnov, Owen et al

Astrophysical sources

Subject covered here
by Sam Finn, Fred Rasio
Talk by Bernard Schutz
Picked up for you:
NS torn away by BH field

M Vallisneri + refs therein

Frequency depends on EOS

But also on BH spin

Data analysis for this phase will not be based on templates, need low noise

May apply steep bandpass filter to find last observed *f*

GW frequency at tidal disruption, f(m, R, M, a)

M, a: BH mass and spin

R: NS radius at 15 %, to be related to EOS

NS mass m at 1.4 M

Dots: a/M needed to have disruption at 6M ISCO

Astrophysical sources: Black hole and NS modes

Chandrasekhar-Friedman-Schutz instability
Gravitational waves from hot young NS
BJ Owen, L Lindblom, C Cutler, BF Schutz, A Vecchio, N Andersson
At D=20 MPc:

$$h_c \approx 5.7 \times 10^{-22} \left(\frac{f}{1kHz}\right)^{1/2}$$

Non linear evolution of R-modes

L Lindblom, J E Tohline, M Vallisneri

Saturation of the R-mode instability

P Arras, E E Flanagan, S M Morsink, A Katrin Schenk, S A Teukolsky, I Wasserman

Cosmological background

Physics Report by Maggiore (gr-qc/9909001)

Expressed in terms of

$$\Omega_{
m gw}(f) = rac{1}{
ho_c} \, rac{d
ho_{
m gw}}{d\log f} \, .$$

where

$$ho_c=rac{3H_0^2}{8\pi G}$$

$$h_c(f) \simeq 1.263 \times 10^{-18} \left(\frac{1 \text{Hz}}{f}\right) \sqrt{h_0^2 \Omega_{\text{gw}}(f)}$$

 $h_{\rm c}$: characteristic value of the amplitude per unit ln f Assuming a narrow band Δf

$$h_c(f, \Delta f) \simeq 2.249 \times 10^{-25} \left(\frac{1 \text{Hz}}{f}\right)^{3/2} \left(\frac{h_0^2 \Omega_{\text{gw}}(f)}{10^{-6}}\right)^{1/2} \left(\frac{\Delta f}{3.17 \times 10^{-8} \text{Hz}}\right)^{1/2}$$

Cosmological background (2)

Two co-located detectors

$$h_{\min}^{2d}(f) \simeq \frac{1}{(\frac{1}{2}T\Delta f)^{1/4}} \frac{1}{\sqrt{2}} h_{\min}^{1d}(f) \simeq 1.12 \times 10^{-2} h_{\min}^{1d}(f) \left(\frac{1 \text{ Hz}}{\Delta f}\right)^{1/4} \left(\frac{1 \text{ yr}}{T}\right)^{1/4}$$

Two Virgo

$$h_0^2 \Omega_{\text{gw}}^{\text{min}}(f) \sim 3 \times 10^{-7} \left(\frac{f}{100 \text{Hz}}\right)^3 \left(\frac{\tilde{h}_f}{10^{-22} \text{Hz}^{-1/2}}\right)^2$$

Bounds on $h_0^2\Omega_{GW}$ and De Sitter inflation

Nucleosynthesis: integral bound

COBE

Pulsar bound

Pre big bang cosmology

Low energy effective action of string theory (Veneziano 1993)

De Sitter inflation + vacuum amplification fluctuation

Model with two parameters: $0 < f_s < 1-100 \text{ GHz}$ $\mu > 0$

Detection

Detection is difficult

- Interferometers: need to fight shot noise and reduce finesse
- Acoustic detectors: Bonaldi et al, available on gr-qc/0302012

Microwave/mechanical cavity detectors
 Gemme, Chincarini, Picasso et al

AMALDI 5

5th Edoardo Amaldi Conference on gravitational waves

Green Park Resort - Tirrenia (Pisa) - 8-13 luglio 2003

International advisory committee

B. Barish (USA), D. Blair (Australia), S. Bonazzola (France), V. Braginsky (Russia), A. Brillet (France), E. Coccia (Italy, chair), M. Cerdonio (Italy), T. Damour (France), M. Davier (France), K. Danzmann (Germany), S. Dhurandhar (India), S. Finn (USA), G. Frossati (Netherlands), M. Fujimoto (Japan), A. Giazotto (Italy), J. Hough (UK), K. Kuroda (Japan), D. McClelland (Australia), S. Meshkov (USA), F. Pacini (Italy), N. Robertson (UK), A. Ruediger (Germany), G. Sanders (USA), B. Schutz (Germany), A. Scribano (Italy), S. Shore (USA), K. Thorne (USA), Ph. Tourrenc (France), K. Tsubono (Japan), R. Weiss (USA), W. Winkler (Germany).

Local organising committee

M. Barsuglia (LAL), S. Braccini (Pisa), C. Bradaschia (chair) (Pisa), G. Cella (Pisa), V. Dattilo (Pisa), I. Ferrante (Pisa), F. Fidecaro (Pisa), I. Fiori (Firenze), F. Frasconi (Pisa), L. Lilli (Pisa), G. Losurdo (Firenze), E. Majorana (Pisa), F. Vetrano (Firenze), A. Vicere' (Firenze).

5th Edoardo Amaldi Conference on Gravitational Waves

Green Park Resort - Tirrenia (Pisa) - Italy

July 6-11, 2003