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Executive summary

• S1 science run took 3 weeks of data (Aug. 23 – Sep. 9, 2003)
on 4 detectors (LIGO L1, H1, H2, and GEO600).

• Data analyzed for signal from PSR J1939+2134, using two methods:

? Frequency-domain frequentist analysis ⇒ h0 < (2.8± 0.3)× 10−22

? Time-domain Bayesian analysis ⇒ h0 < (1.0± 0.1)× 10−22

• Upper limits were set in each case

• For this pulsar, h0 < 1.0× 10−22 corresponds to ellipticity ratio
(non-axisymmetry) ε < 7.5× 10−5.
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GWs from pulsars

• Pulsars = spinning neutron stars

• Emit gravitational waves if they are non-axisymmetric

• Possible mechanisms:
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GWs from pulsars

• Pulsars = spinning neutron stars

• Emit gravitational waves if they are non-axisymmetric

• Possible mechanisms:

? “Mountains” on solid crust
? “Trapped” magnetic fields
? Unstable fluid modes
? Compositional/thermal inhomogeneities

⇒ Most likely for known pulsars

? Emit primarily at GW frequency = 2×spin frequency
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GWs from pulsars

• Intrinsic amplitude:

h0 = (1.06×10−23)
(
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• Signal in detector is:

h(t) = h0

{
F+(t, ψ)

1 + cos2 ι
2

cos[Φ(t) + φ0] + F×(t, ψ) cos ι sin[Φ(t) + φ0]
}

F+, F× = polarization beam patterns (known)
Φ = observed rotation phase (known)

h0 = intrinsic amplitude (above)
ψ = polarization angle
ι = inclination angle

φ0 = phase offset
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GWs from pulsars

• At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

〈h0〉 = 11.4
√
Sh(fgw)/Tobs

• 3 week integration

• Known pulsars shown

• PSR J1939+2134
fgw = 1283.86Hz

⇒ No detection expected!
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LIGO and GEO during S1

• First LIGO/GEO science run (S1): August 23 – September 9, 2002
17 days = 408 hours

• Total of four interferometers participating:

? LIGO Livingston L1 (4 km):
duty cycle 41.7%, total locked time: 170 hours

? LIGO Hanford H1 (4 km):
duty cycle 57.6%, total locked time: 235 hours

? LIGO Hanford H2 (2 km):
duty cycle 73.1%, total locked time: 298 hours

? GEO (600 m):
duty cycle 98.5%! total locked time: 396 hours
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LIGO and GEO during S1

Instrumental sensitivity:

• Coincidence not important,
only total uptime

• Shorter instruments had
higher uptime

⇒ Comparable sensitivity at
frequency of interest!
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Frequency-domain analysis

• F-statistic is a quadrature sum of 4 linear filters.

• In Gaussian noise, it is a maximum likelihood estimator of signal amplitude,
implicitly maximized over φ0, ψ, and cos ι.

? 2F follows a χ2 distribution with 4 degrees of freedom and non-centrality
parameter λ ∝

∫
h(t)2dt.

• In generic noise, compute p(F|~a) using Monte-Carlo injections of simulated
signals.

• Originally developed for pulsar searches: code exists to compute F
simultaneously over broad frequency ranges.
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Frequency-domain analysis

• Frequentist approach: Determine the value F∗ of the statistic for our source
from our data.

• Determine p(F|h0) for a range of h0.
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Frequency-domain analysis

• Frequentist approach: Determine the value F∗ of the statistic for our source
from our data.

• Determine p(F|h0) for a range of h0.

• 95% frequentist upper limit h∗95 is the value such that, for repeated trials with
a signal h0 > h∗95, we would obtain F > F∗ more than 95% of the time:

0.95 =
∫ ∞

F∗
p(F|h0 = h∗95) dF

• Extra detail: When computing p(F|h0) via Monte-Carlo, inject signals with
worst possible orientation ψ, ι. This gives a conservative upper limit.
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Frequency-domain analysis

The raw data:
√
Sh (10−20Hz−1/2) versus frequency in Hz.

• Note spectral
disturbance in GEO600
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Frequency-domain analysis

Probability distributions:

• All except GEO600 are
consistent with Gaussian
statistics (Kolmogorov-
Smirnov test)

• 95% upper limits:

2F∗ h∗95

GEO 1.5 1.9× 10−21

L1 3.9 2.8× 10−22

H1 4.7 6.4× 10−22

H2 5.2 4.7× 10−22
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Time-domain analysis

• Signal is heterodyned by (known) instantaneous frequency of J1939+2134

? Reduces pulsar signal to DC
? Removes Doppler modulation from signal

• Resampled at 1/minute, and noise estimated for each minute

⇒ data Bk ± σk every minute.

• Data are then fit to a signal model:

y(t;~a) = 1
4h0e

2iφ0
[
F+(t, ψ)(1 + cos2 ι)− 2F×(t, ψ) cos ι

]
where ~a = (h0, φ0, ψ, cos ι) are unknown parameters.

CaJAGWR 2003-04-15 16



Time-domain analysis

• Bayesian approach: Compute joint probability distribution over all of ~a, using
uniform priors on h0, φ0, ψ, cos ι:

p(~a|{Bk}) ∝ p(~a) · p({Bk}|~a)
↑ ↑ ↑

posterior prior likelihood

In Gaussian noise, likelihood ∝ e−χ2/2, where χ2(~a) =
∑

k

∣∣∣Bk−y(tk;~a)
σk

∣∣∣2
• To get probability distribution on h0, marginalize over other parameters:

p(h0|{Bk}) ∝
∫
dφ0

∫
dψ

∫
d cos ι e−χ2/2

• 95% confidence upper limit h95 defined by:

0.95 =
∫ h95

0

dh0 p(h0|{Bk})
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Time-domain analysis

The raw data:
√
Sh (Hz−1/2) versus time in days
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Time-domain analysis

Gaussianity of resampled data Bk:

• GEO is not in fact consistent
with Gaussian distribution.

? Spectral disturbance near
this frequency

? Might raise our upper limit
by about ×1.5

• LIGO detectors are
consistent with Gaussian
distribution.
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Time-domain analysis

Posterior probability distributions:

• 95% upper limits:

GEO 2.1× 10−21

L1 1.4× 10−22

H1 2.7× 10−22

H2 2.2× 10−22

• Can inject simulated
signal to see how PDF
changes.

GEO

H1

L1

H2
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Time-domain analysis

• Can also compute joint probability distribution:

p(~a|all data) = p(~a|GEO) · p(~a|L1) · p(~a|H1) · p(~a|H2)

• Marginalizing gives:
h95 = 1.0× 10−22
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Comparison of results

Frequentist UL Bayesian UL
h∗95 h95

GEO 1.9× 10−21 2.1× 10−21

H1 6.4× 10−22 2.7× 10−22

H2 4.7× 10−22 2.2× 10−22

L1 2.8× 10−22 1.4× 10−22

Joint – 1.0× 10−22

• PSR J1939+2134 is at 3.6 kpc

⇒ ellipticity ε ≤ 7.5× 10−5
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Comparison of results

• Bayesian and frequentist analyses answer two different questions:

? Bayesian: Given our model and priors, for what value h95 are we 95%
sure that the true h0 lies below this level?
⇒ Threshold on p(h0|data, priors)

? Frequentist: Given the measured value of F∗, for what value h∗95 would a
signal with h0 > h∗95 yield F > F∗ 95% of the time?
⇒ Threshold on p(data|h0,orientation)

• It is therefore not surprising that the values h95 and h∗95 do not in general
agree.

• Discrepancy largely due to worst-case (conservative) orientation chosen for
frequentist approach.
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Comparison of results

Other experimental results:

• Best UL on continuous signals is from a bar detector: 2.9 × 10−24 around
921.3 Hz from Galactic centre

? but no known pulsar at that frequency/location.

• Best previous UL on PSR J1939+2134 is 1× 10−20 (using a divided bar).

• Indirect observational UL is 2× 10−27 based on spindown rate.
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Future searches

Second science run (S2) has just completed.

• Order of magnitude
improvement in
sensitivity!

• We want to start in on
new data as soon as
possible.
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Future searches

• Targeted searches on all known pulsars.

• Directed searches on known systems with unknown phase evolution (e.g.
xray binaries).

• Broad-band wide-area searches.
⇒ Set upper limits on unknown sources.

• As instruments continue to improve, we may make actual detections of
gravitational emissions!
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