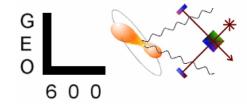


First LIGO/GEO Upper Limits on Pulsar Gravitational Emissions

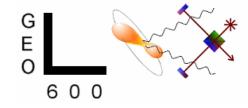
Teviet Creighton


For the Pulsar Upper Limits Working Group of the LIGO Scientific Collaboration

> CaJAGWR Seminar April 15, 2003

LIGO-G030189-00-Z

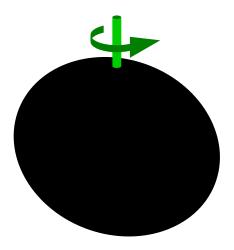
Executive summary

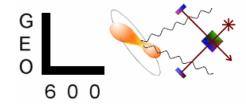


- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:
 - ★ Frequency-domain frequentist analysis
 - ★ Time-domain Bayesian analysis

 $\Rightarrow h_0 < (2.8 \pm 0.3) \times 10^{-22}$ $\Rightarrow h_0 < (1.0 \pm 0.1) \times 10^{-22}$

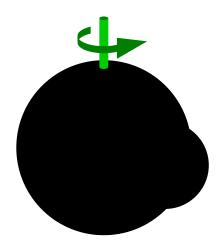
- Upper limits were set in each case
- For this pulsar, $h_0 < 1.0 \times 10^{-22}$ corresponds to ellipticity ratio (non-axisymmetry) $\epsilon < 7.5 \times 10^{-5}$.

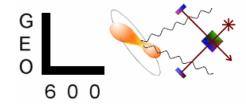




- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

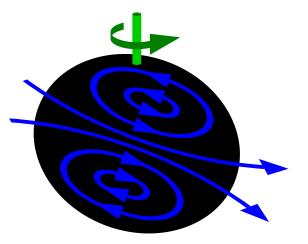
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:

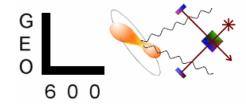




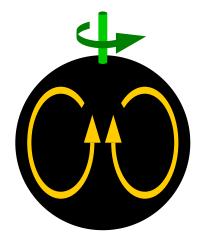
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:

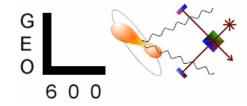
LIGO


★ "Mountains" on solid crust

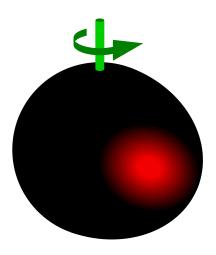


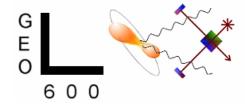
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:


- ★ "Mountains" on solid crust
- ★ "Trapped" magnetic fields

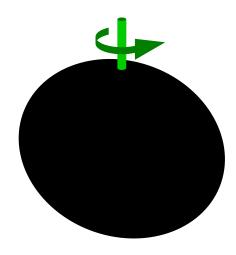


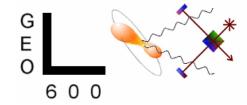
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:


- ★ "Mountains" on solid crust
- ★ "Trapped" magnetic fields
- ★ Unstable fluid modes



- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:

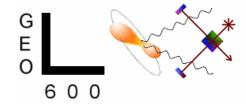

- ★ "Mountains" on solid crust
- ★ "Trapped" magnetic fields
- ★ Unstable fluid modes
- Compositional/thermal inhomogeneities



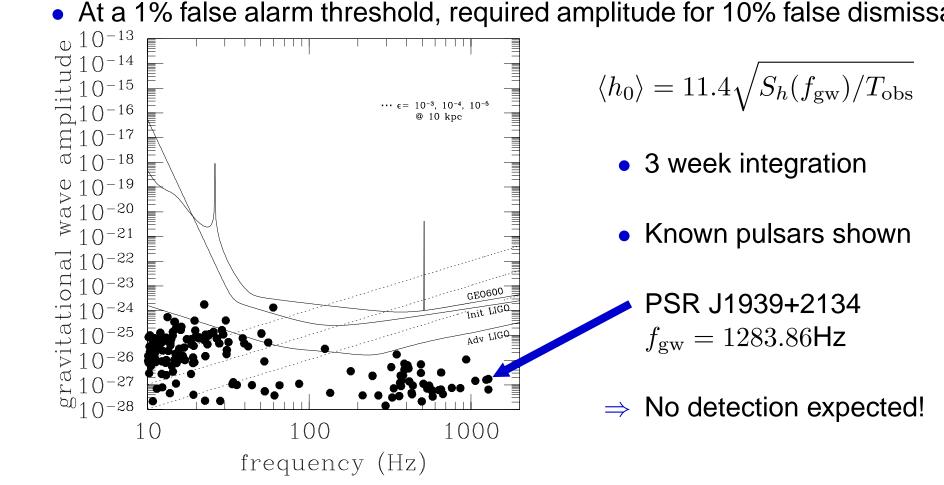
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:

- ★ "Mountains" on solid crust
- ★ "Trapped" magnetic fields
- * Unstable fluid modes
- * Compositional/thermal inhomogeneities
- \Rightarrow Most likely for known pulsars
 - ★ Emit primarily at GW frequency = $2 \times \text{spin}$ frequency

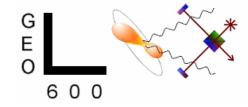
• Intrinsic amplitude:


LIGO

$$h_0 = (1.06 \times 10^{-23}) \left(\frac{I}{10^{45} \mathrm{g} \,\mathrm{cm}^2}\right) \left(\frac{1 \,\mathrm{kpc}}{r}\right) \left(\frac{f_{\mathrm{gw}}}{1 \,\mathrm{kHz}}\right)^2 \left(\frac{\epsilon}{10^{-5}}\right)$$


• Signal in detector is:

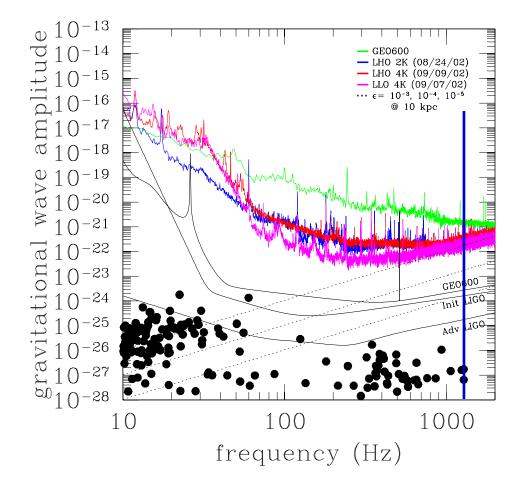
$$h(t) = h_0 \left\{ F_+(t,\psi) \frac{1 + \cos^2 \iota}{2} \cos[\Phi(t) + \phi_0] + F_\times(t,\psi) \cos \iota \sin[\Phi(t) + \phi_0] \right\}$$


- $F_+, F_{\times} =$ polarization beam patterns (known)
 - Φ = observed rotation phase (known)
 - h_0 = intrinsic amplitude (above)
 - ψ = polarization angle
 - $\iota =$ inclination angle
 - ϕ_0 = phase offset

At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

I. Gravitational waves from pulsars

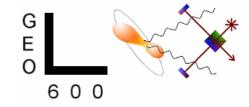
II. LIGO and GEO during S1


- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - LIGO Livingston L1 (4 km): duty cycle 41.7%, total locked time: 170 hours
 - LIGO Hanford H1 (4 km): duty cycle 57.6%, total locked time: 235 hours
 - LIGO Hanford H2 (2 km): duty cycle 73.1%, total locked time: 298 hours
 - GEO (600 m): duty cycle 98.5%! total locked time: 396 hours

LIGO and GEO during S1

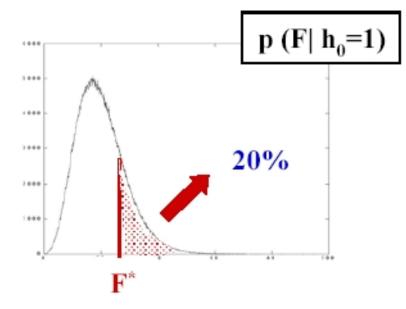
Instrumental sensitivity:

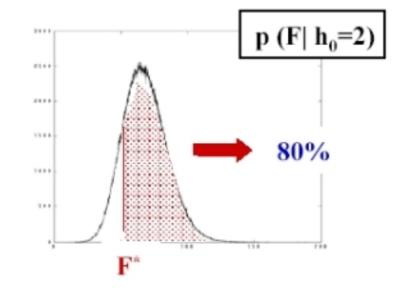

 Coincidence not important, only total uptime

G E

600

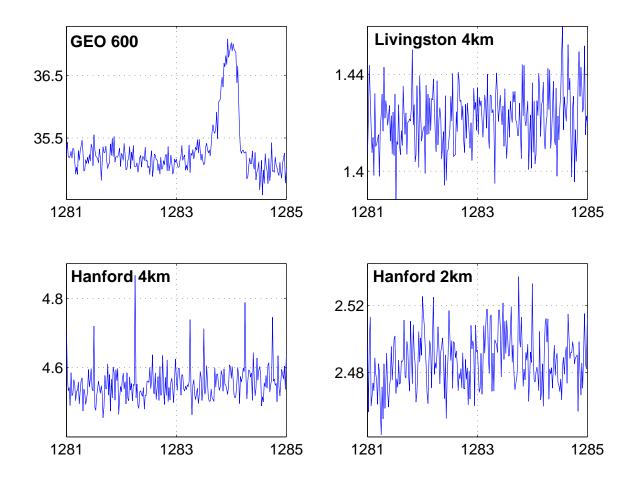
- Shorter instruments had higher uptime
- ⇒ Comparable sensitivity at frequency of interest!




- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

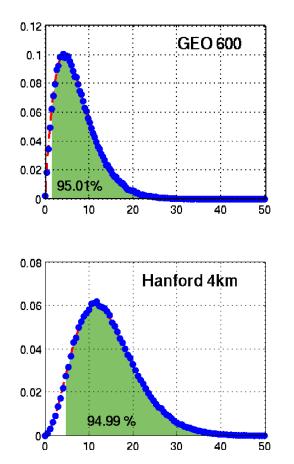
- \mathcal{F} -statistic is a quadrature sum of 4 linear filters.
- In Gaussian noise, it is a *maximum likelihood* estimator of signal amplitude, implicitly maximized over ϕ_0 , ψ , and $\cos \iota$.
 - * $2\mathcal{F}$ follows a χ^2 distribution with 4 degrees of freedom and non-centrality parameter $\lambda \propto \int h(t)^2 dt$.
- In generic noise, compute $p(\mathcal{F}|\vec{a})$ using Monte-Carlo injections of simulated signals.
- Originally developed for pulsar searches: code exists to compute \mathcal{F} simultaneously over broad frequency ranges.

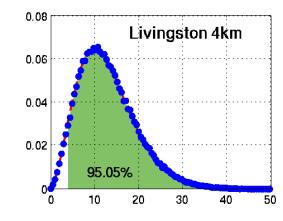
- *Frequentist* approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .

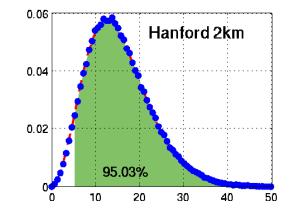


- *Frequentist* approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .
- 95% frequentist upper limit h_{95}^* is the value such that, for repeated trials with a signal $h_0 > h_{95}^*$, we would obtain $\mathcal{F} > \mathcal{F}^*$ more than 95% of the time:

$$0.95 = \int_{\mathcal{F}^*}^{\infty} p(\mathcal{F}|h_0 = h_{95}^*) \ d\mathcal{F}$$

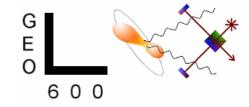

• Extra detail: When computing $p(\mathcal{F}|h_0)$ via Monte-Carlo, inject signals with worst possible orientation ψ , ι . This gives a *conservative* upper limit.

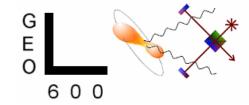

The raw data: $\sqrt{S_h}$ (10⁻²⁰Hz^{-1/2}) versus frequency in Hz.



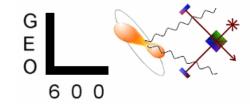
 Note spectral disturbance in GEO600

Probability distributions:




 All except GEO600 are consistent with Gaussian statistics (Kolmogorov-Smirnov test)

$$\begin{array}{cccc} 2\mathcal{F}^* & h_{95}^* \\ \text{GEO} & 1.5 & 1.9 \times 10^{-21} \\ \text{L1} & 3.9 & 2.8 \times 10^{-22} \\ \text{H1} & 4.7 & 6.4 \times 10^{-22} \\ \text{H2} & 5.2 & 4.7 \times 10^{-22} \end{array}$$


- I. Gravitational waves from pulsars
- I. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

- Signal is *heterodyned* by (known) instantaneous frequency of J1939+2134
 - ★ Reduces pulsar signal to DC
 - ★ Removes Doppler modulation from signal
- Resampled at 1/minute, and noise estimated for each minute
 - \Rightarrow data $B_k \pm \sigma_k$ every minute.
- Data are then fit to a signal model:

$$y(t;\vec{a}) = \frac{1}{4}h_0 e^{2i\phi_0} \left[F_+(t,\psi)(1+\cos^2\iota) - 2F_\times(t,\psi)\cos\iota \right]$$

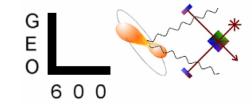
where $\vec{a} = (h_0, \phi_0, \psi, \cos \iota)$ are unknown parameters.

• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:

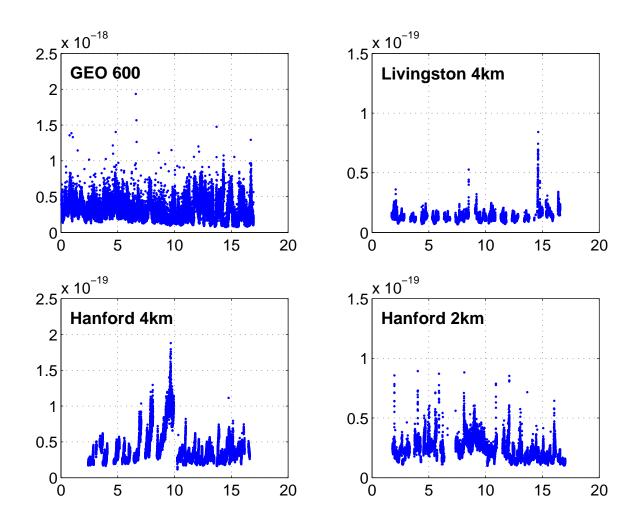
$$p(\vec{a}|\{B_k\}) \propto p(\vec{a}) \cdot p(\{B_k\}|\vec{a})$$

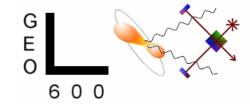
 $\uparrow \qquad \uparrow \qquad \uparrow$
posterior prior likelihood

In Gaussian noise, likelihood $\propto e^{-\chi^2/2}$, where $\chi^2(\vec{a}) = \sum_k \left| \frac{B_k - y(t_k; \vec{a})}{\sigma_k} \right|^2$

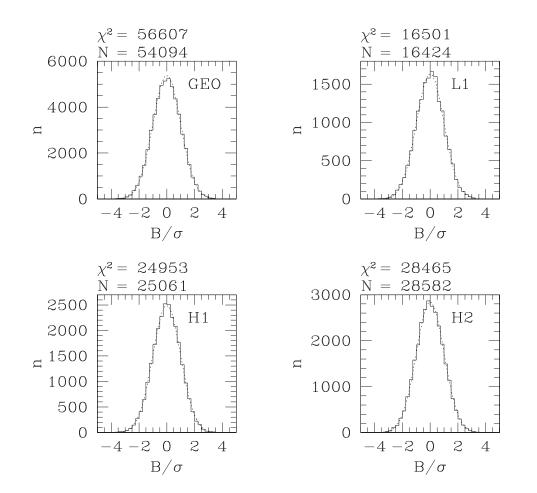

• To get probability distribution on h_0 , marginalize over other parameters:

$$p(h_0|\{B_k\}) \propto \int d\phi_0 \int d\psi \int d\cos \iota \ e^{-\chi^2/2}$$

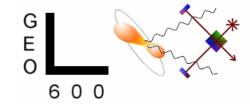

• 95% confidence upper limit h_{95} defined by:

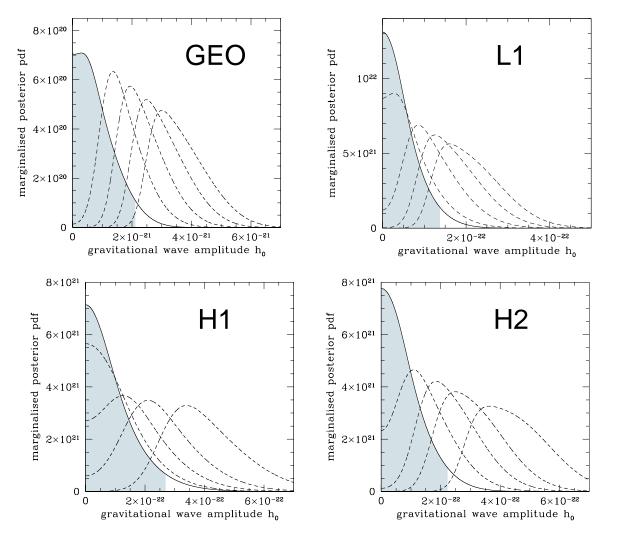

$$0.95 = \int_0^{h_{95}} dh_0 \ p(h_0 | \{B_k\})$$

LGO

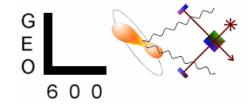


The raw data: $\sqrt{S_h}$ (Hz^{-1/2}) versus time in days




Gaussianity of resampled data B_k :

- GEO is not in fact consistent with Gaussian distribution.
 - Spectral disturbance near this frequency
 - ★ Might raise our upper limit by about $\times 1.5$
- LIGO detectors are consistent with Gaussian distribution.

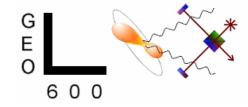

Posterior probability distributions:

• 95% upper limits:

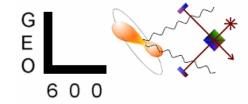
GEO	2.1×10^{-21}
L1	1.4×10^{-22}
H1	2.7×10^{-22}
H2	2.2×10^{-22}

 Can inject simulated signal to see how PDF changes.

• Can also compute joint probability distribution:

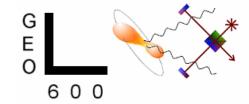

 $p(\vec{a}|\text{all data}) = p(\vec{a}|\text{GEO}) \cdot p(\vec{a}|\text{L1}) \cdot p(\vec{a}|\text{H1}) \cdot p(\vec{a}|\text{H2})$

• Marginalizing gives:


LIGO

 $h_{95} = 1.0 \times 10^{-22}$

- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

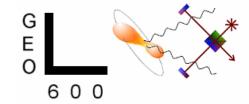


Comparison of results

	Frequentist UL	Bayesian UL
	h_{95}^{*}	h_{95}
GEO	1.9×10^{-21}	2.1×10^{-21}
H1	6.4×10^{-22}	2.7×10^{-22}
H2	4.7×10^{-22}	2.2×10^{-22}
L1	2.8×10^{-22}	1.4×10^{-22}
Joint	—	1.0×10^{-22}

• PSR J1939+2134 is at 3.6 kpc

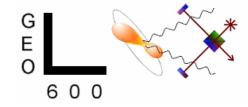
 \Rightarrow ellipticity $\epsilon \leq 7.5 \times 10^{-5}$



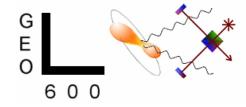
Comparison of results

- Bayesian and frequentist analyses answer two different questions:
 - ★ Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$
 - ★ Frequentist: Given the measured value of \mathcal{F}^* , for what value h_{95}^* would a signal with $h_0 > h_{95}^*$ yield $\mathcal{F} > \mathcal{F}^*$ 95% of the time?
 - \Rightarrow Threshold on $p(\text{data}|h_0, \text{orientation})$
- It is therefore not surprising that the values h_{95} and h_{95}^* do not in general agree.
- Discrepancy largely due to worst-case (conservative) orientation chosen for frequentist approach.

LGO

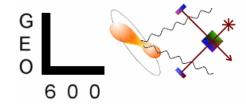


Other experimental results:


- Best UL on continuous signals is from a bar detector: 2.9×10^{-24} around 921.3 Hz from Galactic centre
 - \star but no known pulsar at that frequency/location.
- Best previous UL on PSR J1939+2134 is 1×10^{-20} (using a divided bar).
- Indirect observational UL is 2×10^{-27} based on spindown rate.

- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

Future searches


Second science run (S2) has just completed.

- Order of magnitude improvement in sensitivity!
- We want to start in on new data as soon as possible.

Future searches

- Targeted searches on all known pulsars.
- Directed searches on known systems with unknown phase evolution (e.g. xray binaries).
- Broad-band wide-area searches.
 - \Rightarrow Set upper limits on *unknown* sources.
- As instruments continue to improve, we may make actual detections of gravitational emissions!