SQL Related Experiments at the ANU

LIGO - G030180-00-D

Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland

Y Chen and Prof. Stan Whitcomb

Experiments at the ANU

Squeezing enhanced power recycled Michelson

(K. McKenzie, D. A. Shaddock, B. C. Buchler, M. B. Gray, P. K. Lam, D. E. McClelland)

Speed meter control scheme and frequency response

(G. De Vine, Y. Chen, M. B. Gray, S. Whitcomb, D. E. McClelland)

Classical noise cancellation

(C. Mow-Lowry, B. S. Sheard, M. B. Gray, S. Whitcomb, D. E. McClelland)

Squeezing Enhanced Michelson Optical Layout

Squeezing Enhanced Michelson Squeezed State Measurement

Squeezing at 5.5 MHz

3.5 dB below shot noise

Squeezing Enhanced Michelson Sensitivity Results

Squeezing Enhanced Michelson Summary of Results

First experimental demonstration of a gravitational wave detector configuration operating below the shot noise limit

The control scheme, configuration, and injection optics for the squeezed state are compatible with full scale detectors

Speed Meter Configuration Demonstration

- Measures relative velocity of end test masses
- Involves the addition of a "sloshing" cavity and a signal cavity output coupler for signal extraction
- Theory: e.g. Phys. Rev. D 66, 022001 (2002)

Speed Meter How Does It Work?

- The sloshing cavity sends the GW signal back into the interferometer with a pi phase shift
- This then cancels the position signal (the interferometers response is like a differentiator up to the sloshing frequency)
- Thus the interferometer measures the relative velocity of the test masses
- Sloshing frequency determined by the storage time of the signal and sloshing cavities

Speed Meter Optical Layout

Speed Meter Frequency Response

Speed Meter Control and Readout

- An RF control scheme was devised using two resonant phase modulators
- Standard Schnupp and PDH techniques were used
- The frequency response was measured by injecting a 'signal laser' into the back mirror of an arm cavity
- The frequency response was in agreement with theoretical predictions

The Quantum noise of a coherent state, represented as a 'ball and stick'

- Quantum phase fluctuations directly couple into GW measurements, and the limiting sensitivity is labeled – Shot Noise
- Quantum amplitude fluctuations cause mirrors to move, via radiation pressure, resulting in – Radiation Pressure Noise
- These two noise sources scale oppositely with power, producing a minimum at an ideal power

- Both Shot Noise and Radiation Pressure Noise limit sensitivity at the SQL
- > How can we do better?

Squeezing?

Noise Cancellation The Principle

- At the SQL shot noise and radiation pressure noise are the same size
- If they are correlated with the appropriate phase, they will cancel
- Squeezing can be used to correlate the fluctuations
- Thus squeezing can be used to breach the SQL

Squeezing at 45 degrees correlates fluctuations in the two quadratures

Noise Cancellation The Classical Equivalent

- We performed a bench top experiment which is the classical analogue to breaching the Standard Quantum Limit
 - We used Amplitude modulation to replace radiation pressure noise, and
 - Frequency modulation to replace shot noise
- These artificially imposed noise sources can mimic quantum noise

Noise Cancellation The Classical Equivalent

- Performing this experiment in the classical regime greatly eases noise requirements, facilitating bench top work
- It provides proof of principle results
- Most importantly, it generates experience working with interferometers which are dominated by radiation pressure

- There were several important features in the design:
 - Creating a bench top environment sufficiently quiet
 - The design of the lightweight mirror
 - The optical layout, and
 - Control and readout of the mirror position

> The experiment uncovered

Some real numbers:

Standard input power

Circulating power

Angular spring constant

Maximum optical force

Maximum optical torque

Predicted displacement

~ 200 mW

~ 40 W

~ 0.5 Nm/rad

 $\sim 4 \times 10^{-7} \text{ N}$

 $\sim 5 \times 10^{-9} \text{ Nm}$

 $\sim 10^{-11} \text{ m}$

Verification that error signal disturbances from input AM were caused by radiation pressure was done in 3 ways:

- Measurement of the transfer function from amplitude modulation to error signal disturbance,
- Observation of the scaling of the error signal disturbance with input power, and
- A calibrated measurement of motion for a known driving radiation pressure force

Mirror motion (m)

Noise Cancellation Results

Frequency (Hz)

- The first cancellation data was recorded at a single frequency by:
 - Introducing a sinusoidal AM signal
 - Adding an FM signal at a different frequency, and matching their error signal amplitudes
 - Phase locking the signals at the same frequency
 - Adjusting their relative phases and amplitudes until the peak reached a minimum

- To achieve broadband noise cancellation, bandwidth limited white noise was generated
- The signal was split, to supply inputs to both the amplitude and frequency modulators
- To counter the effect of the mechanical transfer function, one path was shifted in amplitude and phase, then inverted

Noise Cancellation Further Work

Several additions were made to the work shown here:

- An unmodulated, orthogonally polarized probe was used to readout cavity length
- Better optical power and cavity finesse measurements were made
- Measurements were made of frequency shifts from opto-mechanical coupling

Noise Cancellation Further Work - Results

Conclusions

- A squeezing enhanced Michelson interferometer was shown to operate with sensitivity better than the shot noise limit
- A speed meter control scheme and frequency response was demonstrated
- Correlated noise in the same quadratures as shot noise and radiation pressure noise was shown to cancel in the presence of a movable mirror