LIGO

Lock Acquisition in LIGO

• Who am I?

- » Matt Evans
- » Caltech graduate

What is Lock Acquisition?

» The process by which an uncontrolled interferometer is brought to its operating point.

Why do I care, and why should you?

- » If you can't lock your interferometer, you can't use it as a gravitational wave detector.
- This talk will focus on LIGO specifics
 - » More general: Thesis on Lock Acquisition (in the DCC)
 - » More accurate: InputMatrix3.c

Matt Evans, LSC March 2003 (G030176-00-E)

The Lock Acquisition Path

	State 1 : Nothing is controlled. This is the starting point for lock acquisition.
Ē	State 2 : The power recycling cavity is held on a carrier anti-resonance. In this state the sidebands resonate in the recycling cavity. (Engaged)
Б	State 3 : One of the ETMs is controlled and the carrier resonates in the controlled arm. (Engaged + ArmXOn, or Engaged + ArmYOn)
і Т Т	State 4 : The remaining ETM is controlled and the carrier resonates in both arms and the recycling cavity. (Engaged + ArmXOn + ArmYOn)
⊥ ⊨ ≠ ⊨	State 5 : The power in the IFO has stabilized at its operating level. End point for lock acquisition. (Engaged + ArmXOn + ArmYOn + LockOn)

Matt Evans, LSC March 2003 (G030176-00-E)

Discontinuous Changes: Triggers and Bits

Engaged

- » Set when Spob > RecOn, reset when Spob < RecOff
- » Indicates PRM is locked, as in states 2 and above

ArmXOn and ArmYOn

- » Set when Ptr > ArmOn, reset when Ptr < ArmOff
- » Indicates arm is locked, one in state 3, both in state 4

LockOn

- » Set when Ptrx or Ptry > BoostOn, reset when Ptrx and Ptry < BoostOn
- » Set as state 5 is approached
- » Not really indicative of state change, but necessary to enable low frequency control loop changes

Lock Acquisition: Real and Simulated

LIGO

The Sensing Matrix and Cavity Control

Sensing Matrix

- » Expresses demodulation signal content
- » Signal amplitude
- » Local oscillator
- » Gain constant

IFO Control

- » Invert sensing matrix to get control matrix (a.k.a. "input matrix")
- » Use control matrix to produce error signals from demodulation signals

 $[REFL_Q] = [glmRef O_{Sref}G_S][MICH]$

LIGO

The Sensing Matrix: State 2

- MICH
 - » MICH is taken from REFL_Q
- PRC
 - » PRC is taken from REFL_I
- Signal Amplitude
 - » Signal source
 - » Signal gain
- Local Oscillator
 - » Oscillator amplitude
 - » Spatial overlap

 $[REFL_Q] = [glmRef O_{Sref}G_S][MICH]$

 $[REFL_I] = [glpRef O_{Sref} G_S][PRC]$

$$G_{S} = S_{pob} \propto \frac{A_{Srec}}{t_{RM} A_{Sin}} A_{Srec}$$

$$O_{Sref} = \alpha_{SC} (r_{RM} A_{Cin} - t_{RM} A_{Crec})$$

(Note to the careful reader: many overall constants are missing.) *Matt Evans, LSC March 2003 (G030176-00-E)*

The Sensing Matrix: State 3

- PRC, CARM
 - » Use REFL_I and AS_Q
- DARM

LIGO

- » Dependent variable
- Signal Amplitude
 - » Sum and difference
 - » Input field changes
- Local Oscillator
 - Carrier well matched to input beam
 - » AS just leakage of REC

$$\begin{bmatrix} REFL_I \\ AS_Q \end{bmatrix} = \begin{bmatrix} glpRef \ O_{Sref} G_S & gLRef \ O_{Cref} G_+ \\ 0 & gLAsy \ O_{Casy} G_- \end{bmatrix} \begin{bmatrix} PRC \\ CARM \end{bmatrix}$$

 $DARM = \pm CARM$

$$G_{+} = \frac{P_{trx} + P_{try}}{A_{Crec}} \qquad \qquad G_{-} = \frac{P_{trx} - P_{try}}{A_{Crec}}$$

$$O_{Cref} = r_{RM} A_{Sin} - \alpha_{SC} t_{RM} A_{Srec}$$

$$O_{Casy} = \alpha_{SC} A_{Srec}$$

The Sensing Matrix: States 4 and 5

• MICH • Switches from REFL_Q to $\begin{bmatrix} REFL_Q\\ POB_Q \end{bmatrix} = \begin{bmatrix} glmRef O_{Sref}G_S\\ glmPob O_{Spob}G_S \end{bmatrix} [MICH]$ POB_Q (lmPO bit)

PRC, CARM, DARM

》	3x3	$\begin{bmatrix} REFL \ I \end{bmatrix}$	$\int \text{glpRef } O_{\text{Sref}} G_{\text{S}}$	gLRef $O_{Cref}G_+$	gLRef $O_{Cref}G_{-}$	PRC
»	G_{-} vanishes	$ POB_I =$	$glpPob O_{Spob}G_{S}$	$gLPob O_{Cpob}G_+$	gLPob $O_{Cpob}G_{-}$	CARM
»	Singularity	$\begin{bmatrix} AS _ Q \end{bmatrix}$	0	$gLAsy O_{Casy}G_{-}$	$\operatorname{gLAsy} O_{\operatorname{Casy}} G_+$	

Local Oscillator

- » POB also leakage of REC
- » similar to POX or POY in state 5

$$O_{Spob} = \alpha_{SC} A_{Crec}$$

$$O_{Cpob} = \alpha_{SC} A_{Srec}$$

Matt Evans, LSC March 2003 (G030176-00-E)

Measuring the Sensing Matrix Element

Gain Ratios

- » These "constants" are measured directly
- » Represent hardware gain (optical and electrical)
- » Errors introduced by clipping and other uncompensated effects

Amplitudes

- » Derived from power measurements (S_{pob}, P_{trx}, P_{try})
- » Calibration necessary (NSPOB, NPTRX, NPTRY)
- » Errors introduced by clipping and sideband imbalance
- Spatial Overlap Coefficient
 - » Changes due to thermal lensing and alignment
 - » Estimated by input spatial overlap
 - » Robust in simulation

Matt Evans, LSC March 2003 (G030176-00-E)

LIGO Improved Mode Overlap due to Thermal Lensing

PRM is nears optimally coupled for SBs

- » O_{Cref} small and noisy
- » CARM small and noisy in REFL_I
- » O_{Cpob} larger with higher NSPOB
- » CARM larger in POB_I
- State 4 singularity happens later
 - » Near NSPOB = NPTR
 - » Currently crossed quickly at low NPTR
 - » Later means slower and more difficult to cross
- Use non-resonant SBs on reflection?

$$O_{Cref} = r_{RM} A_{Sin} - \alpha_{SC} t_{RM} A_{Srec}$$
$$\propto r_{RM} A_{Sin}^2 - (1 - r_{RM}) S_{pob}$$

$$O_{Cpob} = \alpha_{SC} A_{Srec} \propto S_{pob}$$

Conclusion

Lock acquisition components

- » Acquisition path (states 1 through 5)
- » Sensing matrix

LIGO

- Equations for elements along the path
- Amplitude, gain and mode-overlap estimators
- » Control matrix is inverse of sensing matrix

Thermal lensing

- » Affects lock acquisition
 - Cold vs. hot should have same gain ratios
 - Singularity duration increases with better mode matching
- » Affects lock maintenance
 - CM loop may need to use POX or non-resonant SBs
- and now for a shameless SimLIGO plug...

Matt Evans, LSC March 2003 (G030176-00-E)

SimLIGO "Best possible noise curve"

Perfect optical surfaces

LIGO

- » H1 as built curvatures, reflectivities and losses
- » Thermal lens nearly optimal
- » No clipping or scattering

More, cleaner power

- » 5W at the RM with no intensity noise
- » Uses all of the light at the AS port
- No electronics noise except digitization
 - » All control loops active (LSC and ASC)
- Result: close to SRD
 - » Starting point for time domain noise study
 - » Still some work to be done

SimLIGO More Realistic Noise Curve

Full Strength SimLIGO Hanford Seismic Noise

» Close to H1 observed

LIGO

» SRD seems optimistic

Electronics noises present, but

- » No noise from dampers (OSEM or OL)
- » Rev A1 dewhiteners on all test masses
- CM loop not present in SimLIGO
 - » Frequency noise not present
 - » Intensity noise not present
- Still 5W in, but only 1 AS PD

