

Upper Limits on the Rate of Gravitational Wave Bursts from the First LIGO Science Run

Edward Daw Louisiana State University

LIGO Scientific Collaboration

LIGO Searching for 'Unmodelled' Bursts

AIM The LIGO burst group searches for waveforms from sources for which we cannot currently make an accurate prediction of the waveform shape.

LIGO Scientific Collaboration

The Analysis Pipeline

LIGO Scientific Collaboration

LIGO

LIGO

Determination of Efficiency

Efficiency measured for 'tfclusters' algorithm

LIGO Scientific Collaboration

The 'S1' Science Run Data

- 96.0 hours triple coincidence, science locks
 - » 9.3 hours set aside as playground
- 86.7 hours

LIGO

- » 5.6 hours lost due to 360 sec granularity in burst search jobs
- 81.1 hours
 - » 26.5 hours cut by epoch veto (L1 H1 H2 combined)
- 54.6 hours
 - » 19.1 hours rejected because of poorly determined interferometer calibration
- 35.5 hours of data

LIGO Upper Limit for 1ms Gaussian Bursts

LIGO Scientific Collaboration

Conclusions and Future Work

The S1 dataset has served as a testing ground for many ideas in the analysis of gravitational wave data for bursts of gravitational waves whose exact waveform is not known.

There is a lot of work to do. For example:

•Analyze the S2 data currently being taken. Sensitivity ~10 times that during S1.

•Tune our analysis to check the excess claim from Astone *et. al.*

•Tighten time window for coincidence between triggers from different interferometers

•Use time domain waveform correlation as a test of coincident triggers.

LIGO