Metropolis-Hastings Approach For Continuous Wave and Inspiral Searches

Nelson Christensen

Physics and Astronomy, Carelton College

LSC ASIS Working Group

Session on Analysis Methods, Astrophysics Source Talks

 $\label{eq:Session 1, 3-20-03}$ In Collaboration with Réjean Dupuis and Graham Woan

1

LIGO-G030133-00-Z

Bayesian Inference, Posterior Computation and Parameter Estimation

Antenna output data $\mathbf{z}(\mathbf{t})$

Joint probability distribution function (PDF) $p(\mathbf{z}|\boldsymbol{\theta})$ conditional on unobserved parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$.

The PDF $p(\mathbf{z}|\boldsymbol{\theta})$ is usually referred to as the *likelihood* and regarded as a function of the parameters $\boldsymbol{\theta}$.

Bayes' Theorem: Condition on the post-experimental knowledge about $\boldsymbol{\theta}$ expressed through the *posterior* PDF

$$p(\boldsymbol{\theta}|\mathbf{z}) = \frac{p(\boldsymbol{\theta})p(\mathbf{z}|\boldsymbol{\theta})}{m(\mathbf{z})} \propto p(\boldsymbol{\theta})p(\mathbf{z}|\boldsymbol{\theta})$$
(1)

 $m(\mathbf{z}) = \int p(\mathbf{z}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$ the marginal PDF of \mathbf{z} and regarded as a normalizing constant.

Posterior PDF is proportional to product of prior and likelihood.

The point estimate of a single parameter, say θ_i , is the posterior mean

$$[\theta_i] = \int \theta_i p(\theta_i | \mathbf{z}) d\theta_i \tag{2}$$

where

$$p(\theta_i | \mathbf{z}) = \int \dots \int p(\boldsymbol{\theta} | \mathbf{z}) d\theta_1 \dots d\theta_{i-1} d\theta_{i+1} \dots d\theta_d.$$
(3)

is the marginal posterior PDF.

The Metropolis-Hastings Algorithm: Candidate is generated from an auxiliary PDF and accepted or rejected with some probability.

Candidate generating PDF, $q(\boldsymbol{\theta}|\boldsymbol{\theta}_n)$ depends on the current state $\boldsymbol{\theta}_n$ of the Markov chain. A new candidate $\boldsymbol{\theta}'$ is accepted with a certain *acceptance probability* $\alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}_n)$ also depending on the current state $\boldsymbol{\theta}_n$ given by:

$$\alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}_n) = \min\left\{\frac{p(\boldsymbol{\theta}')p(\mathbf{z}|\boldsymbol{\theta}')q(\boldsymbol{\theta}_n|\boldsymbol{\theta}')}{p(\boldsymbol{\theta}_n)p(\mathbf{z}|\boldsymbol{\theta}_n)q(\boldsymbol{\theta}'|\boldsymbol{\theta}_n)}, 1\right\}$$

if $(p(\boldsymbol{\theta}_n)p(\mathbf{z}|\boldsymbol{\theta}_n)q(\boldsymbol{\theta}'|\boldsymbol{\theta}_n)) > 0$ and $\alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}_n) = 1$ otherwise. For good

efficiency a multivariate normal distribution is used for $q(\boldsymbol{\theta}|\boldsymbol{\theta}_n)$. The steps of the MH algorithm are therefore:

Step 0: Start with an arbitrary value $\boldsymbol{\theta}_0$

Step n + 1: Generate $\boldsymbol{\theta}'$ from $q(\boldsymbol{\theta}|\boldsymbol{\theta}_n)$ and u from U(0,1)

If
$$u \leq \alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}_n)$$
 set $\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}'$ (acceptance)
If $u > \alpha(\boldsymbol{\theta}'|\boldsymbol{\theta}_n)$ set $\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n$ (rejection)

The signals were generated by Réjean Dupuis. Data consisted of 14000 points for \mathbf{y}_k , the heterodyned signal. Signals had the following parameters:

 $\psi = 0.392699081 \; \phi = 0.785398163 \; \iota = 0.785398163$

RA = 0.0 DEC = 0.785398163

 $\sigma(y.re) = \sigma(y.im) = 1.0$

The prior ranges used were:

 $cos(\iota) - > [0,1], \ \psi - > [0,\pi/4], \ \phi - > [0,2\pi], \ h - > [0,\inf)$ For results see

http://physics.carleton.edu/Faculty/Nelson/MCMCpulsar/MCMCpulsar.htm

Signals had the following parameters:

$$\psi = 0.2 \ \phi = 0.1 \ \iota = 0.7$$

RA = 0.0 DEC = 0.785398163

 $\sigma(y.re) = \sigma(y.im) = 1.0$

The prior ranges used were:

 $\cos(\iota) - > [0,1], \ \psi - > [0,\pi/4], \ \phi - > [-\pi,\pi], \ h - > [0,\inf)$

What Next? Primary aim is to conduct a *DirectedSearch* Uncertainty (small at first) in the frequency f_0 After that - other parameters such as \dot{f}_0 Sky Location??? Also Using Metropolis-Hastings To Find Inspiral Events

Example with $m_1 = 3.0, m_2 = 4.5$

 $\eta = 0.24, m_t = 7.5, SNR = 14$

Trace of h0

Trace of h0

Trace of h0

Density of h0

Trace of mtotal

Density of mtotal

