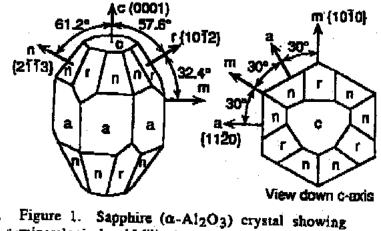


Core Optics Sapphire Development


GariLynn Billingsley Caltech seminar 4 March 2003

Introduction to Sapphire

• Advanced LIGO <u>baseline</u> Test Mass – Sapphire

- » Greater Astronomical reach
 - Thermal characteristics
 - Mechanical properties
- » Large, optical quality sapphire is not yet an "off the shelf" item

" mineralogical and Miller index notation.

Material Production

• Five experimental growth runs Crystal Systems

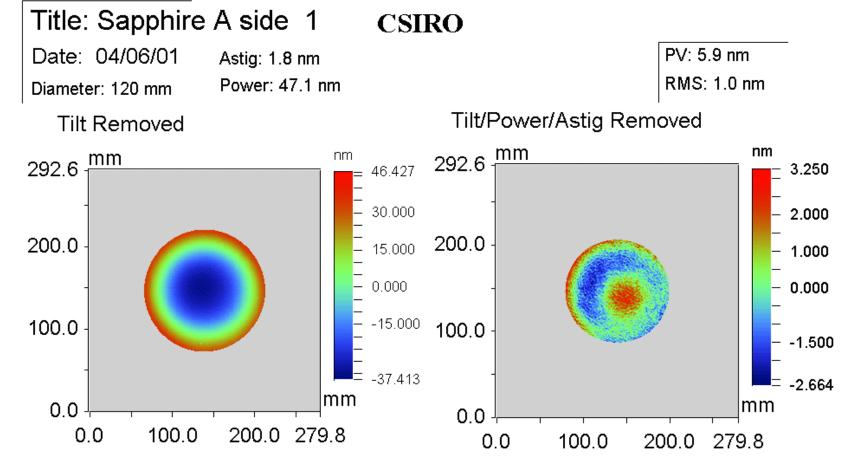
- » Two of five 15" boules are considered good optical quality
- » Two of five are not
- » LIGO has bought one "good" and one "not" to test for use as transmissive and non-transmissive test masses
 - Plan to measure absorption, scatter, homogeneity, Q
- » CSI is moving on to concentrate on 20" boules
- Shanghai Institute of Optics and Fine Mechanics
 - » Furnace is in place
 - » No large pieces yet

• Rubicon

LIGO

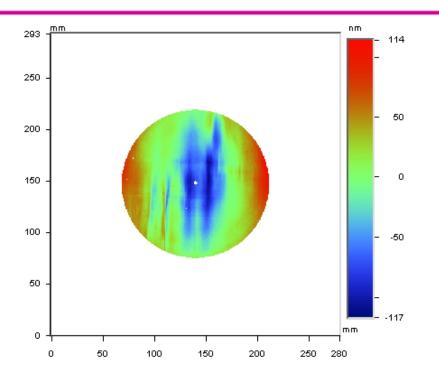
» Just received 150 mm piece for optical testing, and 10 cubes for absorption tests

Polishing Surface One


• CSIRO and Wave Precision have good results

- » Microroughness to ~ 1Å
- » CSIRO better figure (better metrology)

More at http://www.ligo.caltech.edu/~gari/sysmtg.html


LIGO

LADI CERTIFICATION DATA

Homogeneity

- Can't get c-axis in sizes 314 mm x 130 mm
- The problem with m- and a-axis sapphire...

 Date:
 08/11/2000
 X Cent

 Time:
 14:23:44
 Y Cent

 Wavelength:
 690.700 nm
 Radius

 Pupil:
 100.0 %
 Terms

 PV:
 231.4251 nm
 Filters:

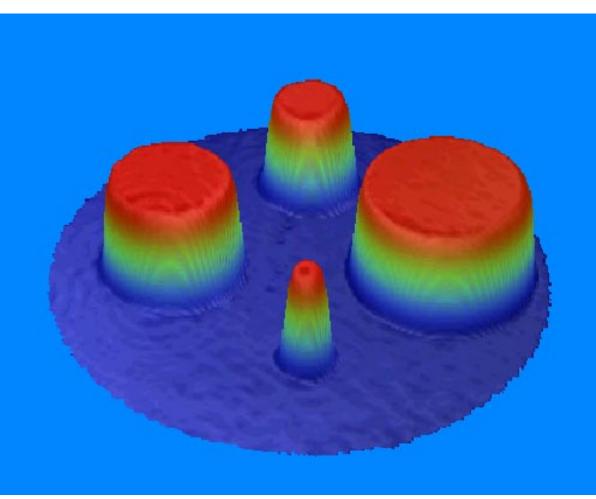
 RMS:
 41.4312 nm
 Masks

 LIGO Laboratory
 X
 X

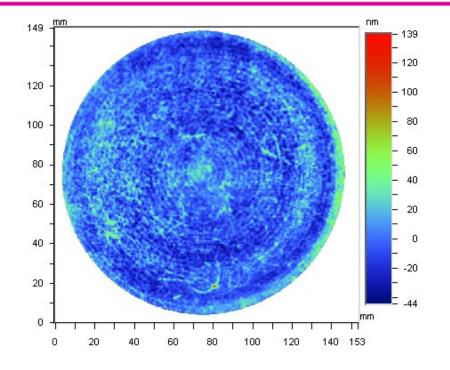
X Center: 280.00 Y Center: 280.00 Radius: 143.43 pix Terms: Tilt Filters: None Masks:

LIGO

6



Homogeneity Compensation


Compensation studies

- » CSIRO
 - Fluid jet polishing
 - Compensating coating deposition
 - Ion beam etch
- » Goodrich (formerly Perkin Elmer, HDOS, Raytheon)
 - Computer controlled polishing

LIGO Ion beam etch wins most sexy approach

LIGO Compensating Polish by Goodrich wins most mature approach

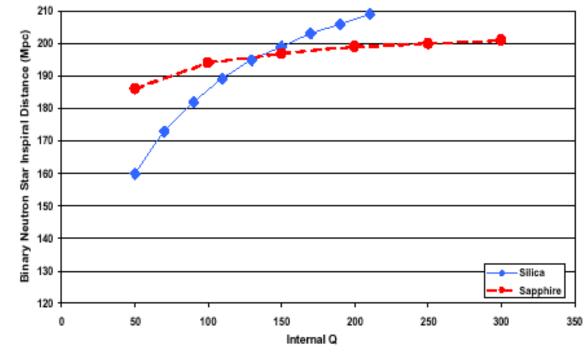
Date: 04/16/2002	X Center: 282.00
Time: 14:37:03	Y Center: 243.00
Wavelength: 1.064 um	Radius: 269.89 pix
Pupil: 100.0 %	Terms: Tilt
PV: 183.6397 nm	Filters: None
RMS: 14.6141 nm	Masks: Detector Mask
LIGO Laboratory	

Absorption

- Absorption is studied at Stanford Route, Fejer
 - » 10 ppm/cm required in order to throw out active thermal compensation
 - » Typically 50 ppm/cm in large samples as received
 - » Isolated observations at 10 ppm/cm, existence proof
 - » Annealing Studies have produced 20 30 ppm/cm to date
- Response Active thermal compensation
 - » Ryan Lawrence Thesis at MIT
 - » Dave Ottaway taking over for Ryan Lawrence at MIT
 - » Full cavity experiment at Gin Gin, Western Australia
- Measure profile in full size boule at Lyon 3-03
 - » Ring heater or scanned laser approach depends on these results

LIGO

Sapphire Q


- Phil Willems has begun measurement of full size pieces
 - $\, \ast \,$ 314 mm x 130 mm boules measured Q $\sim 2x10^8$
 - For a mode with no motion at the barrel

LIGO

Fused silica-not out of the running

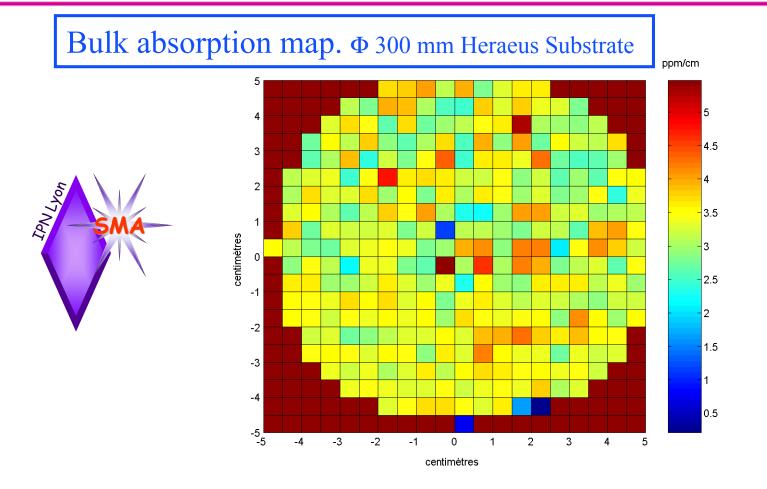
- Higher Q in FS performance ~ as good as that of sapphire
 - » Best choice depends on coating
 - » Highest modal Q of a fused silica sample observed to date is approximately 200 million, observed at Syracuse
 - » Annealing studies needed


BNS Range vs Q for Y_{coat} = 10 GPa and ϕ_{coat} = 1 10⁻⁵

Modeled using Bench – G. Harry T030007

-Steve Penn-

Surface loss limited Q for full size FS ~ $4x10^9$ presume the bulk loss will dominate at some point



LIGO

13

Measurements on fused silica

Challenges

• Scatter, Absorption in large sapphire is unknown

- » Testing February-June
- » Rigorous calculation of acceptable Recycling Cavity loss
- New FS Q data opens up a new line of inquiry
 - » Annealing studies
 - » Surface studies
- High thermoelastic noise in sapphire is reduced with a large beam footprint (D'Ambrosio et al)
 - » Providing good polish is obtainable to edge of large optics
 - » Investigate control of such a cavity benchtop?

LIGO

Schedule Milestones

- Delivery of first two large sapphire substrates Feb '03
- Measurement of first two large sapphire substrates
 - » Q, Phil Willems, CIT In process
 - » Absorption map, SMA Lyon
 - » Scatter map, SMA Lyon or CIT (instrument being built at CIT)
 - » Homogeneity, CIT
- Material down-select July '03
- Install LASTI test masses October '04