

Core Optics Sapphire Development

GariLynn Billingsley Caltech seminar 4 March 2003

Introduction to Sapphire

- Advanced LIGO <u>baseline</u> Test Mass Sapphire
 - » Greater Astronomical reach
 - Thermal characteristics
 - Mechanical properties
 - » Large, optical quality sapphire is not yet an "off the shelf" item

LIGO-G030035-00-D LIGO Laboratory 2

Material Production

- Five experimental growth runs Crystal Systems
 - » Two of five 15" boules are considered good optical quality
 - » Two of five are not
 - » LIGO has bought one "good" and one "not" to test for use as transmissive and non-transmissive test masses
 - Plan to measure absorption, scatter, homogeneity, Q
 - » CSI is moving on to concentrate on 20" boules
- Shanghai Institute of Optics and Fine Mechanics
 - » Furnace is in place
 - » No large pieces yet
- Rubicon
 - » Just received 150 mm piece for optical testing, and 10 cubes for absorption tests

Polishing Surface One

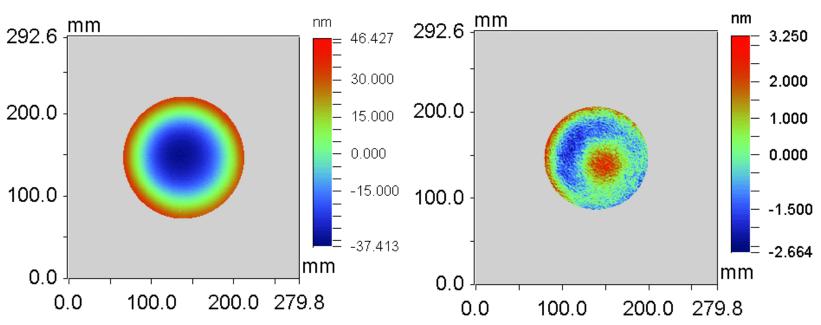
- CSIRO and Wave Precision have good results
 - » Microroughness to ~ 1Å
 - » CSIRO better figure (better metrology)

Backup link

LADI CERTIFICATION DATA

Title: Sapphire A side 1 CSIRO

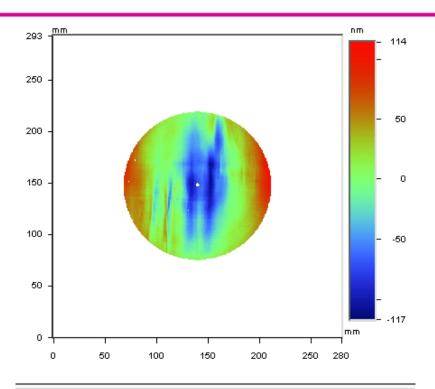
Date: 04/06/01 Astig: 1.8 nm


Diameter: 120 mm Power: 47.1 nm

PV: 5.9 nm

RMS: 1.0 nm

Tilt Removed


Tilt/Power/Astig Removed

Homogeneity

- Can't get c-axis
 in large sizes
 314 mm x 130 mm
- The problem with m- and a-axis sapphire...

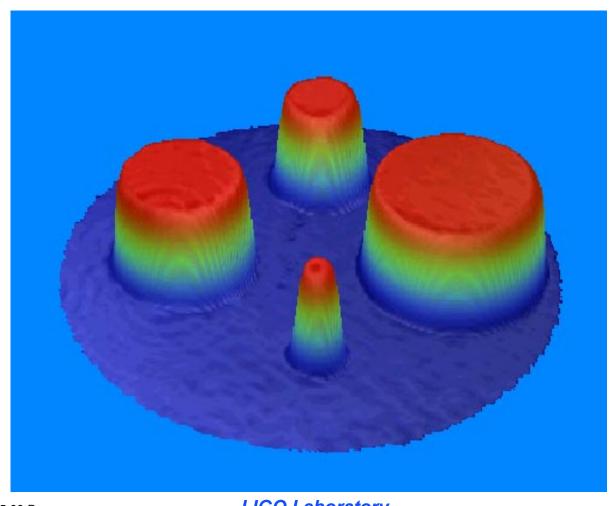
Date: 08/11/2000 Time: 14:23:44

Wavelength: 690.700 nm

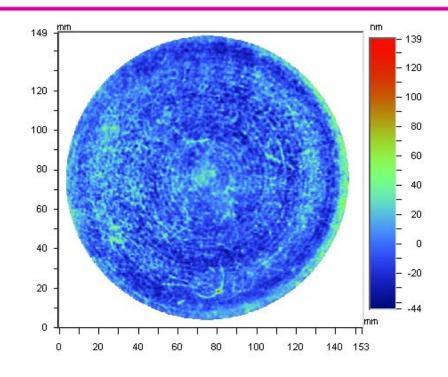
Pupil: 100.0 % PV: 231.4251 nm RMS: 41.4312 nm X Center: 280.00 Y Center: 280.00 Radius: 143.43 pix

Terms: Tilt Filters: None

Masks:



Homogeneity


- Compensation studies
 - » CSIRO
 - Fluid jet polishing
 - Compensating coating deposition
 - Ion beam etch
 - » Goodrich (formerly Perkin Elmer, HDOS, Raytheon)
 - Computer controlled polishing

Ion beam etch wins most sexy approach

LIGO Compensating Polish by Goodrich wins most mature approach

Date: 04/16/2002 Time: 14:37:03

Wavelength: 1.064 um

Pupil: 100.0 % PV: 183.6397 nm RMS: 14.6141 nm X Center: 282.00

Y Center: 243.00

Radius: 269.89 pix Terms: Tilt

Filters: None

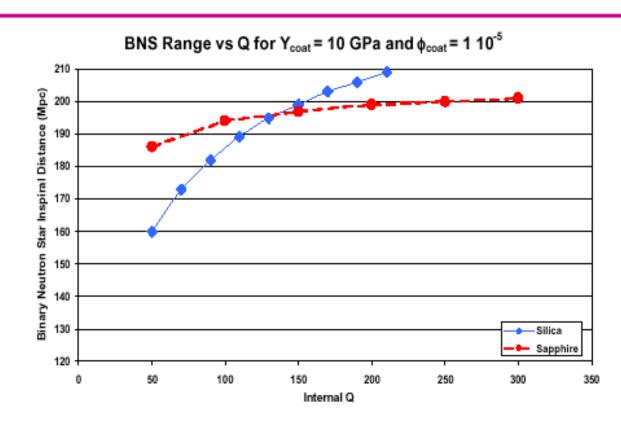
Masks: Detector Mask

LIGO Laboratory

Absorption

- Absorption is studied at Stanford
 - » 10 ppm/cm required in order to throw out active thermal compensation
 - » Typically 50 ppm/cm in large samples as received
 - » Isolated observations at 10 ppm/cm, existence proof
 - » Annealing Studies have produced 20 30 ppm/cm to date
- Response Active thermal compensation
 - » Ryan Lawrence Thesis at MIT
 - » Dave Ottaway taking over for Ryan Lawrence at MIT
 - » Full cavity experiment at Gin Gin, Western Australia
- Measure profile in full size boule at Lyon 3-03
 - » Ring heater or scanned laser approach depends on these results

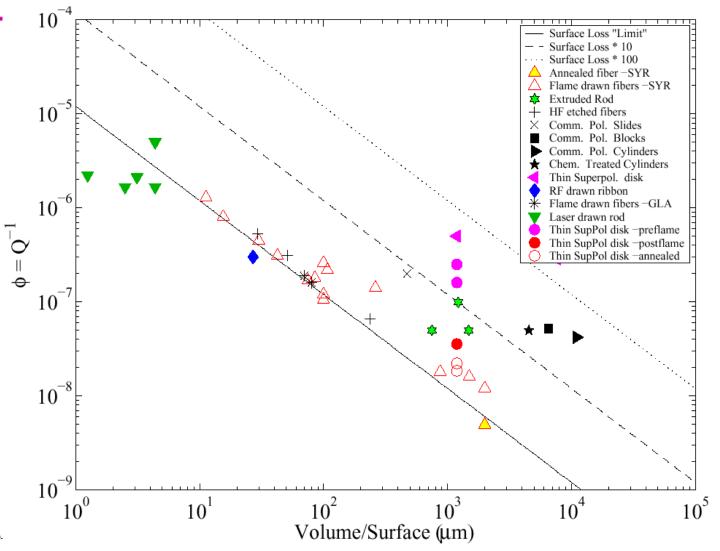
Sapphire Q


- Phil Willems has begun measurement of full size pieces
 - » 314 mm x 130 mm boules measured Q ~ 2x10⁸
 - For a mode with no motion at the barrel!

LIGO-G030035-00-D LIGO Laboratory 11

Fused silica-not out of the running

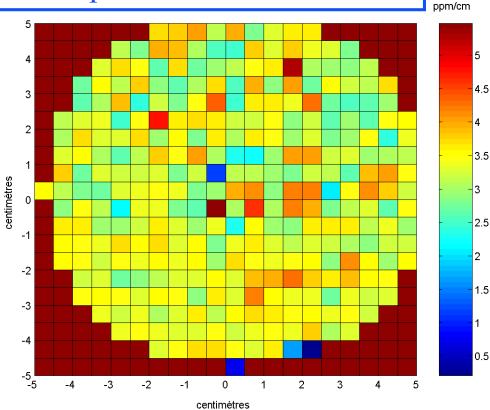
- If we can get a higher Q in FS we can get performance ~ as good as that of sapphire
 - » Which material is best depends on coating
 - » Highest modal Q of a fused silica sample observed to date is approximately 200 million, observed at Syracuse
 - » Annealing studies needed



Modeled using Bench – G. Harry T030007

-Steve Penn-

Surface loss limited Q for full size FS $\sim 4x10^9$ presume the bulk loss will dominate at some point



Measurements on fused silica

Challenges

- Scatter, Absorption in large sapphire is unknown
 - » Testing February-June
 - » Rigorous calculation of acceptable Recycling Cavity loss
- High thermoelastic noise in sapphire is reduced with a large beam footprint (D'Ambrosio et al)
 - » Prove good polish is obtainable to edge of large optics
 - » Investigate control of such a cavity benchtop?

Schedule Milestones

- Delivery of first two large sapphire substrates Feb '03
- Measurement of first two large sapphire substrates
 - » Q, Phil Willems, CIT In process
 - » Absorption map, SMA Lyon
 - » Scatter map, SMA Lyon or CIT (instrument being built at CIT)
 - » Homogeneity, CIT
- Material down-select July '03
- Install LASTI test masses October '04