

The Thermal Lens in LIGO I

William P. Kells LIGO laboratory California Institute of Technology GWADW Aspen, February 2003

G030021-00-D

- Lensing due to absorption in Silica was long ago predicted to seriously alter interferometer optical performance (G_{RECYCLE})
 - □ TL Proportional to *total* absorbed power (hence ifo input power).
 - Part from absorption of beam power through optic bulk.
 - Part from absorption of beam power in optic coatings.
 - **D** Proportional to β/κ where $\beta = dn/dT$; $\kappa =$ thermal conductivity.
 - □ At LIGO I power levels only SB fields (G^{SB}) significantly degrade.

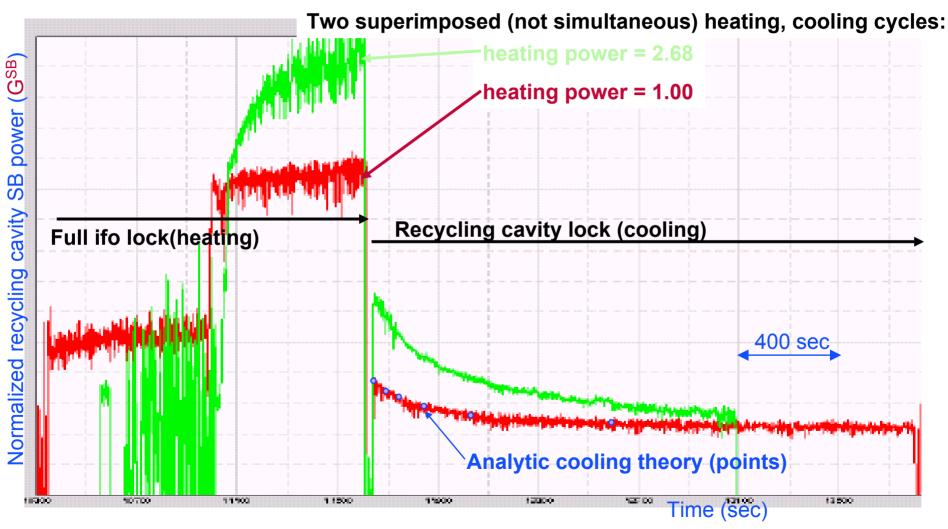
□ At higher power levels (LIGO II) G^{CR} can degrade if not compensated.

• LIGO I strategy: estimate lensing at design power (6w input).

- Compensate for this by optimizing recycling mirror (RM) R.O.C for hot state.
- Validated by FFT modeling of exact (non-spherical) TL in ITMs and BS plus ROC (spherical) optimization of RM.

Report here first actual TL measure/analysis (LHO 4k).

G030021-00-D


LIGO Laboratory

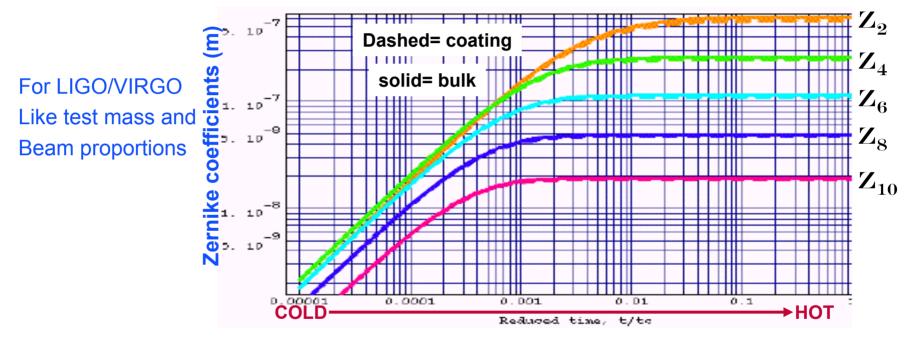
Measurement strategy

- LIGO interferometers now stable enough to reproducibly distinguish heating/cooling effects.
- >95% heating via stable ifo carrier Gaussian field (\$\mathbb{C}P_{in}G^{CR}\$)
 0.6 ppm ITM HR coating absorption
 3 ppm/cm silica bulk ITM/splitter absorption
- Reach Temp. equilibrium for long full interferometer locks.
- Cut off carrier heat source (break full lock), then record cooling curves of:
 - □ G^{SB} vs time in remnant (arm cavity ends misaligned) locked recycling cavity .
 - □ Optical (demodulation) gain vs time.
 - □ Measure for various carrier heating levels (ifo input beam powers).

LIGO

The Thermal lens, Experimental

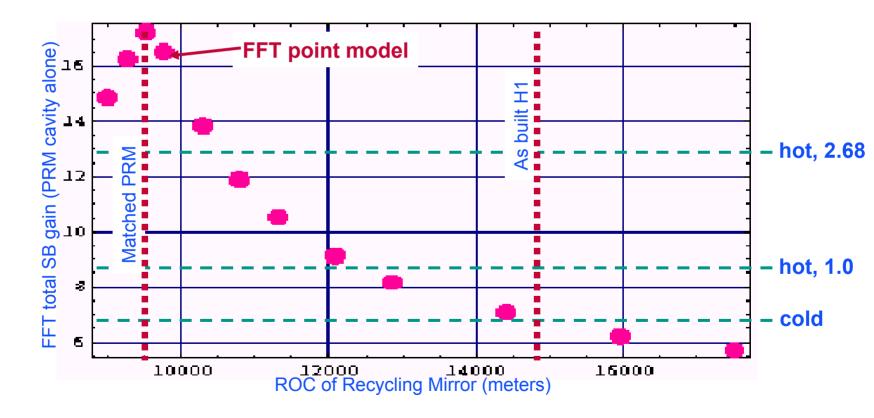
G030021-00-D


LIGO

LIGO Laboratory

LIGO

Bulk vs Coating absorption


Original analytic analysis of silica beam heating (Hello/Vinet) shows remarkable property that TL is ~same for bulk or coating heating for = absorbed power.

Allows fit to single beam power scaled TL distortion for unknown bulk to coating absorption ratio.

FFT model of TL thin lens equivalent

- SB resonant recycling cavity modeled vs RM R.O.C.
- Normalize FFT "as built" G^{SB} to experimental curve cold value

LIGO

LIGO Laboratory

LIGO

Conclusions

- Thermal lensing has been identified and measured in one of the LIGO I interferometers (LHO 4k).
- It is confirmed that the "cool-cold state" (operations to date) significantly degrades G^{SB}
- Scaling of lens vs ifo input power extrapolation to ROC_{optimum}
 Analysis to be used for fabrication of retrofit RM (ifo specific).
 Independent of [unknown] bulk/coating absorption coefficients.
- Accurate compensation of thermal distortion helps all extensions of optical detectors: particularly >>>> high f_{GW}
 Low arm finesse; higher laser power and G^{CR} implies stronger lensing