Reducing Thermoelastic Noise by Reshaping the Light Beams and Test Masses

Research by Vladimir Braginsky, Sergey Strigin & Sergey Vyatchanin [MSU] Erika d'Ambrosio, Richard O'Shaughnessy & Kip Thorne [Caltech]

Talk by Thorne, O'Shaughnessy, d'Ambrosio MIT/LSC Meeting on Flat Topped Beams for Advanced LIGO MIT, 6 September 2002

LIGO-G020543-00-R

KEY POINTS ABOUT THERMOELASTIC NOISE

Physical Nature

- On timescale ~0.01 secs, random heat flow
 => hot and cold bumps of mean size ~0.5 mm
- Hot bumps expand; cold contract
- Light averages over bumps
- Imperfect averaging => Thermoelastic noise

- Computed via fluctuation-dissipation theorem
 - Dissipation mechanism: heat flow down a temperature gradient
 => Computation highly reliable (by contrast with conventional thermal noise!)
 - This reliability gives us confidence in our proposal for reducing thermoelastic noise

Strategies to Reduce Thermoelastic Noise

 Gaussian beam averages over bumps much less effectively than a flat-topped beam.

- The larger the beam, the better the averaging.
 - Size constrained by diffraction losses

OUR FLATTENED MIRRORS & BEAMS

Compute desired beam shape:

- Superposition of minimal-spreading Gaussians -- axes uniformly distributed inside a circle of radius D
- Choose D so diffraction losses are 10 ppm

Computing noise: Fluctuation dissipation theorem

Thought experiment:
 Static pressure on mirror face
 Shape is beam intensity profile, normalization F₀
 ⇒

$$S_{h} = 4 \left(\frac{k_{b} T \alpha E}{(1 - 2\nu)C_{v} \rho} \right)^{2} \frac{1}{\omega^{2}} I \qquad \qquad I = \frac{1}{F_{o}^{2}} \int d^{3}r |\nabla \theta|^{2}$$

I contains information about beam, mirror shape and size

• Find *I* via standard elasticity code (finite-element)

Independently computed by O'Shaughnessy, Strigin, Vyatchanin

$$S_h/S_h^{BL} = I/I_{BL}$$

LIGO Network's NS/NS Range

- Computed by Buonanno & Chen (private communication)
- Includes only thermoelastic noise and optical (unified quantum) noise --- assumes all others can be made negligible
- Optical parameters (SR mirror, homodyne phase) optimized for NS/NS range at each level of thermoelastic noise

Summary of Thermoelastic Predictions

Cylindrical

Test Masses

Baseline Test-Mass Shape Coated to edge - 8mm: Sh/ShBL = 0.364Range = 403 Mpc Rate/RateBL = 2.4Coated to edge: Sh/ShBL = 0.290Range = 431 Mpc Rate/RateBL = 3.0

Summary of Thermoelastic Predictions

Identical Conical Test Masses

ETM & ITM Identical Cones Coated to edge - 8mm: Sh/ShBL = 0.207 Range = 471 Mpc Coated to edge: Sh/ShBL = 0.162 Range = 503 Mpc

9

Summary of Thermoelastic Predictions

Different Cones for ITM & ETM

(10)

Practical Issues: Parasitic Modes & Tilt

- Compare two configurations:
 - **Baseline** Gaussian-Mode Interferometer
 - Mirror radius R= 15.7 cm
 - Gaussian beam radius ro = 4.23 cm
 - Diffraction losses (per bounce in arms) L0 = 1.9 ppm
 - Fiducial MH (Mexican-Hat) Interferometer
 - Mirror radius R = 16 cm
 - MH beam radius D = 10.4 cm
 - Diffraction losses (per bounce in arms) L0 = 18 ppm
 - [Conservative comparison]

Two sets of analysis tools:

- Arm-cavity integral *eigenequation* [-> orthornormal modes]
 - + 1st & 2nd order *perturbation theory* [-> mode mixing]
 - O'Shaugnessy
- FFT simulation code [adapted from LIGO E-2-E model]
 - D'Ambrosio

Propagation and Eigenequation

Same tools as used with spherical mirrors:

- Propagation Operators (=unitary!)
 - Free propagator : If cavity length L,

$$G_L(r,r') = -i\frac{k}{2\pi L}\exp i\left[\frac{(r-r')^2}{2L/k} + kL\right]$$

$$\begin{array}{c} 2\\ G_L |\psi\rangle \uparrow \qquad \downarrow\\ G_2 G_L |\psi\rangle \end{array}$$

 $|\psi\rangle$

 $G_L G_2 G_L |\psi\rangle$

- *Reflection off mirror*: If mirror heights are h(r)

$$G_{1,2}(r,r') = \delta(r-r') \exp[-2ikh_{1,2}(r)]$$

- **Eigenequation**
 - Beam returns after one round trip with similar shape if $\zeta |\psi\rangle = G_1 G_L G_2 G_L |\psi\rangle$
 - Eigensolutions $\{\xi_k, |\psi_k\rangle\}$ complete and orthonormal, with $|\xi_k| = 1$

Eigenproblem Method

Numerical Method

- Discretize the integral operators $\{G_L,G_{1,2}\}\,$ on finite circle $[0,R_{max}]$
- Multiply matricies to form discrete round-trip operator $G_{net}=G_1G_LG_2G_L$
- Diagonalize round-trip operator G_{net}

Output

- Discrete representation of $\{\xi_k, |\psi_k\rangle\}$, appropriate to finite mirror of radius R_{max} . If mirror large, ~ infinite-mirror wavefunction
- Losses:
 - Exact roundtrip losses: $L_{net} = 1 |\xi|^2$
 - Clipping losses:

- Mirror 1:
$$L_1 = 1 - \int_{r < R_1} |\psi|^2 dA$$

- Mirror 2: if
$$\Psi = G_L \psi$$
, then $L_2 = 1 - \int_{r < R_2} |\Psi|^2 dA$

Eigenproblem Perturbation Theory

Perturbation theory

Conventional perturbation theory expansion: if $G_2'=G_2+\delta G_2$

$$|\psi\rangle = |\psi_o\rangle + \sum_{k \neq 0} |k\rangle \frac{\langle k | G_1 G_L \delta G_2 G_L | \psi_o \rangle}{\zeta_o - \zeta_k} + O(\delta G_2^2)$$

etc

Both state and phase vary smoothly with perturbation parameter

Parasitic-Mode Frequencies FSR

- **Baseline Gaussian:** $\Delta \omega = \omega \omega_{\text{fund}} = (\text{integer}) \times (0.0614) \times \pi c/L$
- Fiducial MH: [from cavity eigenequation, solved numerically]

X \rightarrow indicates diffraction losses per bounce > 1%

Tilt-Induced Mode Mixing

- Tilt arm-cavity ETM through an angle $\boldsymbol{\theta}$
- Mode mixing: • $- u'_{0} = (1 - \alpha_{1}^{2})u_{0} + \alpha_{1} u_{1} + \alpha_{2} u_{2}$ $\sim \theta^2$ $|u_{0}|^{2}$ $\sim \theta$ 0.8 0.6 0.4 0.2 7.5 10 12.5 15 2.5 5 radius, cm

The Admixed Parasitic Modes

• From Eigeneqn + Pert'n Theory

From FFT Simulations

(17)

Tilt-Induced Mode Mixing

- Tilt arm-cavity ETM through an angle $\boldsymbol{\theta}$
 - $\theta_8 = \theta/10^{-8}$ rad
- Mode mixing:

$$- u'_{0} = (1 - \alpha_{1}^{2})u_{0} + \alpha_{1} u_{1} + \alpha_{2} u_{2}$$

Fiducial MH Cavity

- From Eigeneqn + Pert'n Theory
 From FFT Simulations
- $\alpha_1 = 0.02272 \, \theta_8$

•
$$\alpha_2 = 0.00016 \theta_8^2$$

Few/1000 •
$$\alpha_1 = 0.0227 \ \theta_8$$

~10% • $\alpha_2 = 0.00018 \ \theta_8^2$

Baseline Gaussian-Beam Cavity

• $\alpha_1 = 0.00469 \ \theta_8$

MH Cavity has same α₁ as Baseline Gaussian if tilt is controlled 5 times better

Influence of Tilt on Cavity Performance

- Arm-Cavity Diffraction Losses
 - Eigeneqn + Pert'n Theory: $L'_0 = (18. + 0.043 \theta_8^2) \text{ ppm}$

- So small it has not been measured reliably in FFT simulations

- Arm-Cavity Gain
 - Eigeneqn + Pert'n Theory: 737 (1 0.00055 θ_8^2)
 - FFT Simulations:

Influence of Tilt on Interferometer's Dark-Port Output Power

- Fraction of input power in dark-port dipolar parasitic mode u₁
 - Eigeneqn + Pert'n Theory: P1 = 478 θ_8^2 ppm
 - FFT Simulations: P1 = 482 θ_8^2 ppm
- Fraction of input power in fundamental mode u₀, and secondorder parasitic mode (monopolar + quadrupolar) u₂
 - Eigeneqn + Pert'n Theory: P0 = 0.256 θ_8^4 ppm
 - $P2 = 0.024 \theta_8^4 \text{ ppm}$ - $(P0 + P2) = 0.28 \theta_8^4 \text{ ppm}$ - FFT Simulations: $(P0 + P2) = 0.31 \theta_8^4 \text{ ppm}$

- **Baseline Gaussian:** $P1 = 22 \theta_8^2 ppm;$ - $P0 = 0.00048 \theta_8^4 ppm$
- MH is same as Gaussian if tilt is controlled 5 times better.

SOME OTHER ISSUES THAT NEED STUDY

- Theoretical Modeling issues:
 - Tolerances on mirror shapes
 - Absolute tolerances
 - Tolerances in relative differences between mirrors
 - Thermal lensing and its compensation
 - Possible dynamical instabilities
 - e.g., rocking motion due to positive rigidity combined with time delay in response
- Laboratory prototyping

