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Globular Clusters

MBH~4000 Msun            20,000 Msun
(stolen from the STScI web site)
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Globular Clusters 

� Very old star clusters  
e.g., ~12 billion yrs old

� N~106 objects

� All > 10 Msun stars evolves 
into BHs, NSs  in ~107 yrs

� ~(6 e-4 N) > 20 Msun ->  
BHs

� Possible intermediate mass 
BHs in the Core  

* LIGO, LISA sources
MBH~4000 Msun            20,000 Msun

(stolen and modified from the STScI web site)

((mediummedium--sizesize))
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Globular Clusters 

� Excellent birthplace for BH binaries
� after 107 yrs, > 20-25 Msun stars evolved into BHs :
� BHs are the heaviest objects left

2-body relaxation,  energy equipartition, mass 
segregation: 

� BHs  sink to the core

� BH binaries form in the core

� LIGO sources if merge within Hubble time

�GR � 6� 1010

(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1 � e2, m0 and m1 are the masses of
each binary component.

1
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� Binary Merger Time Scale

�GR � 6� 1010

(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1 � e2, m0 and m1 are the masses of
each binary component.

�GR � 6� 1010
(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1 � e2, m0 and m1 are the masses of each

binary component.* a: semi-major axis,  ε = 1-e2 ,  m0, m1: masses

* quadrupole approximation for gravitational radiation  

* Need to reduce a or ε to have TGR < Hubble time
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Central BH in Globular Clusters ? 

� Binary-single interaction 
� throws out most BH binaries
� ~ 8 % retained within lifetime 
� recoil velocity associated with hardening
� major contribution to current BH-BH merger even rate

� Binary-binary interactions 
� produce hierarchical triple systems
� ~ 20-50 %

� Kozai mechanism
� drives inner binaries to extreme eccentricity
� shortens TGR
� ~70 % inner binaries could merge successfully 

» before interrupted by interactions with field stars
� Subsequent merger ==> formation of Intermediate mass BHs

(Miller & Hamilton  2002)
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These merger systems are These merger systems are 
associated with extremely associated with extremely 
high eccentricities !high eccentricities !
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Why study eccentricities ?

� High e systems were not expected for LIGO 
detections

� Gravitational radiation reaction is very efficient in circularizing 
the orbit

» e.g., Hulse Taylor NS-NS system
� Current effort has been focused on GWs from circular orbits

� Circular templates might not be good enough for 
optimal detections of high -e systems

� Eccentricity distribution in these systems in LIGO 
band
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Procedure

� Study evolution of individual system
� evolution of εmin
� f mGW ~ (aε)-1.5

� Find parameter space for successful 
mergers 

� consider a, e0, a1,a2,I0, g10, m�s
� merge before disrupted by a field star

� Derive eccentricity distribution in LIGO 
frequency band

� f mGW =10, 40, 200 Hz
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II. Evolution of Individual II. Evolution of Individual 
Triple SystemTriple System



11/19/02, LIGO Seminar LIGO-G020535-00-R

Kozai Mechanism

� Operate in hierarchical Triple 
systems (r2>> r1) 

(Kozai 1962)
� Orbital averaged perturbation

� H=H0 +H�1 +H�2   
� Equations of motion
� Tevol   >> Porb

� Oscillation of e1 and g1  w/  t
� extreme e1 for I0 ~Ic
� e = 1 in classical limit

� a1, a2, e2 fixed 
� (E1,2,   |J2| conserved)

� Cyclic exchange of angular 
momentum between inner and 
outer binaries

I

m2

m1m0

r2

r1
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cos I =
�2 � �2 � �

2�
p
�

:
Necessary condition for e = 1 (� = 0) is,

I0 = Ic = cos�1
0

@�
p
�0

2�
1

A ;

where � = �2=�1
r

(M2a2=M1a1)(1� e22) is the nor-
malized magnitude of the angular momentum of the
outer binary, � is the total angular momentum of the
system with the same normalization.

�GR � 6� 1010

(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1 � e2, m0 and m1 are the masses of
each binary component.

�GR � 6� 1010

(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1 � e2, m0 and m1 are the masses of
each binary component.

cos I =
�2 � �2 � �

2�
p
�

:
Necessary condition for e = 1 (� = 0) is,

I0 = Ic = cos�1
0

@�
p
�0

2�
1

A ;

where � = �2=�1
r

(M2a2=M1a1)(1� e22) is the nor-
malized magnitude of the angular momentum of the
outer binary, � is the total angular momentum of the
system with the same normalization.

�GR � 6� 1010
(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�
3

yr;

where � = 1�e2, m0 and m1 are the masses of each
binary component.

cos I =
�2 � �2 � �

2�
p
�

:

Necessary condition for e = 1 (� = 0) is,

I0 = Ic = cos�1
0
@�

p
�0

2�
1
A ;

where � = �2=�1
r
(M2a2=M1a1)(1� e22) is the normal-

ized magnitude of the angular momentum of the outer

binary, � is the total angular momentum of the system

with the same normalization.

� retrograde orbit
� Ic ~ 90o
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Three competing effects

� Kozai Mechanism
� eccentricity enhancing

� Gravitational radiation reaction (GR effect)
� extract energy and angular momentum
� orbital decay
� circularizing
� important near εmin , negligible otherwise
� rapid transition once GR effect dominates

� Post-Newtonian periastron precession (PN effect)
� mess up the phase relation
� introduce fast oscillations to destroy Kozai cycle
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PN Effect

First-order post-Newtonian approximation can be added

to the doubly-averaged Hamiltonian asHPN = �k�PN=
p
�,

where,
�PN = 8� 10�8

(M1=M�)
2

m2=M�

0
@b2
a1

1
A

3 1
a1=AU

;

and k = 3Gm0m1m2a
2
1=(8M1b

3
2) is a quantity related to

the evolution time scale.
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Kozai mechanism + weak PN and GR e�ects predict

a1 / �
�1
min

The evolution of the parameters �PN , �evol, and �GR

with the decay of the orbit can then be summarized as

follows.

�PN / a
�4
1 / �

4
min

�evol / a
�3=2

1 / �
3=2
min

�GR / a
4
1�

7=2
min / �

�0:5

min :
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The evolution equations govern the four parameters �,

g1, a1, and �0 and are given by

d�
dt

= �10�Ea1:51
p
�(1� �)(1� cos2 I) sin(2g1) +

�G
a41

1� �

�2:5
(

425
304
�

121
304

�);

dg1
dt

= �Ea
1:5
1

8<
:

1
p
�

h
4 cos2 I + (5 cos 2g1 � 1)(�� cos2 I)

i

+
cos I

�

[2 + (1� �)(3� 5 cos 2g1)] +
�PN

�
)

;

da1
dt

= �
6

19
�G

a31
1

�3:5
(

425
96
�

61
16

�+
37

96
�2);

d�0

dt

= �
3

19
�G

a3:51

1
�2

(
15

8
�

7
8

�)
p
a1�+ �0 cos
2 I

�0

;

where �PN is de�ned in equation (), and

�E = 7:4554� 10�8(
m2

M1
)0:5

(m2=M�)
0:5

(a2=AU)3(1� e22)1:5

1
AU1:5

;

�G = 7:8218� 10�26
m0m1M1

M�
3

AU4:

�E = 7:4554� 10�8(
m2

M1
)0:5

(m2=M�)
0:5

(a2=AU)3(1� e22)1:5

1
AU1:5

;

�G = 7:8218� 10�26
m0m1M1

M�

3

AU4:

* Lidov (1976)+ Peters (1964)
+PN effect (Miller & Hamilton 2002)

* KG << KE
* ΘPN  ~a-4
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Estimate ε0
min

� evolution of f mGW depends on aε0
min

� dε/dt =0, solve equation implicitly
� assume energy conservation within one 

cycle
� initial guesses based on classical theory
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I: Merge after many Kozai cycles

� Integrated from the ODE 
equations

� Typical case that the PN 
effects dominates before the 
GR effect 

� System spends most time at 
low eccentricities 

� Gradual change in the 
beginning

� Fast oscillations by PN effects

� GR effect dominates near εmin

� Fast transition

10
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0

ε
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90

I 
o

Time (× 104 yr)

* * εε=1=1--ee22
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II. Merge within one II. Merge within one KozaiKozai cycle cycle 

* I0 ~Ic
* x--- : predicted evolution
*  typical case of extreme eccentricity
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GW Frequency

forb =
p
GM1

2�

a�1:5

1 :

fm
GW

(e1) =
p
GM1

�

(1 + e1)
1:1954 1

(a1�)1:5
;

a1� = (a10�
0
min)

0
@ e1
em

1
A

12=19
0
B@
1 + 121=304e21

1 + 121=304e2m
1
CA

870=2299
:

f mGW   =nm f orb

� f mGW : peak GW frequency at maximum power
� its values depends on aε0

min
� e ~ f mGW

-19/18

� nm(e): peak harmonic,  from Peters (1963)
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� merge after many cycles 
� e~1 at LISA band
� e~0 at 10 Hz
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  (Hz)� merge within one cycle
� e ~1 in LISA band
� e ~0.9 at 10 Hz
� e ~0.2 at 40 Hz
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III. Eccentricity DistributionIII. Eccentricity Distribution
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Requirement for Successful 
Mergers

We assume n6 = 1 in this paper. Successful mergers

of this sort therefore require
�evol < �enc;

�GR(a1; �min)

p
�min

< �enc:

* the system should have enough time to reach extreme eccentricity                      
* merge should occur before the system is disrupted by encounters with field stars

The time scale for disruption (the same as the stellar

encounter time scale) is given as

�enc � 6� 105n�1
6

AU
a2

10M�

M2

yr;

where the number of stars in the globular cluster is

N = 106n6.
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Parameter Space

� mass: all 10 Msun
� 3-20 Msun for known galactic stellar mass BHCs

� a1 =0.2 - 30 AU
� lower limit: not kicked out of GC
� higer limit: disrupted by field stars 

� a2/a1 =[3,5,10,20,30]
� a2/a1 >3:  required by the stability of the triple system

� e10,e20 =0.01-0.901

� g10=0-90o
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Parameter Space

a2/a1 =       20       10            5               3
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Conclusion
� At 10 Hz:

e >0.1  : 30 %, 
e~1 :      2 % 

Eccentricity might be important for advanced LIGO

� At 40 Hz:
e<0.2 

� At 200 Hz:
e<0.04

* Consistent with e ~ f mGW
-19/18

* Eccentricity is probably irrelevant for initial LIGO for this type of   
mergers.  
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�
1=2

min �

1
2


(
�PN +

r
�2PN + 20
�0 [cos I0 +

p
�0=(2�)]
2

)
:

� 1
2


2
664�PN +

vuuuut�2PN + 5


a1

(�2
0 � �2
0)2

�2
0

3
775 :

Here


 = 5�2�0+�0 cos
2 I0+

�PNp
�0
+4�0(cos I0+

p
�0

2�

)2+5(1��0)(cos
2 I0�1) sin2(g0):

6

�GR � 6� 1010

(a=AU)4(�=0:01)3:5

(m0 +m1)m0m1=M�

3

yr;

where � = 1 � e2, m0 and m1 are the masses of each

binary component.

The time scale for the system to swing from e1 � 0 to

e1 � 1 is

�evol � 0:16f
0
@M1

m2
1
A

1=2 0
@a2
a1

1
A

3=2 (a2=AU)3=2

(m2=M�)1=2
(1�e2
2
)3=2 yr;

where f � a few.


