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LIGO II
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Wavefront Distortions via Optical Absorption
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Total power Pa absorbed causes lo-
cal temperature increase ∆T :

Thermal Lensing : Change in local
index of refraction

n → n0 +
dn

dT
∆T

Thermal Expansion : Optical
surfaces expand

h → h0 + αh0∆T
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Wavefront Distortions via Optical Absorption
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Resulting optical path distortion over
the beam waist:

δS ≈ β

∫
δT dz ≈ β

Pa

2πk

≈ 1
µm

W

(
1.4 W/m/◦K

k

)(
β

10 ppm/◦K

)

where:

β ≡
{

dn
dT + α, in transmission

−α, on reflection
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Wavefront Distortions via Optical Absorption
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In terms of TEM00 scatter (assume a
a spherical distortion):

S ≈
(

βPa

2λk

)2

≈ 10
ppm

mW2

(
1.4 W

m ◦ K

k

)2(
β

10 ppm◦K

)2
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Effects of ITM Distortion
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Effects in LIGO II

PP
PRC
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ARM 
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22

Start off with everything cold mode-
matched, and slowly turn up the power.
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Effects in LIGO II

PP
PRC

GG
ARM 

× PP
PRC

22

ITM thermal lens scatters TEM00 power
out of the sidebands, with little effect on
the carrier.

G
(sb)
PRC ∝ t2RM

(1 − rRM)2 + rRMSITM

Silica LIGO II : PPRC ≈ 50 Watts

Sapphire LIGO II : PPRC ≈ 280 Watts
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Effects in LIGO II

PP
PRC

GG
ARM 

× PP
PRC

22

ITM & ETM thermal expansion causes the
Arm Cavity surfaces to flatten (making the
carrier mode larger).

Mode gets ∼ 20% bigger in both Silica
and Sapphire LIGO II.
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Effects in LIGO II

PP
PRC
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ARM 

× PP
PRC

22

Arm cavity gain begins to fall off, due to
mode mismatch induced by ITM thermal
lens.

GARM ∝ (1 − 2SITM) ≈
(

1 − 2

(
βP ITM

a

2λk

)2
)

Silica LIGO II : PPRC ≈ 350 Watts

Sapphire LIGO II : PPRC ≈ 2200 Watts
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Effects in LIGO II

PP
PRC

GG
ARM 

× PP
PRC

22

Total instrument failure when:

ITM thermal lens approaches λ
4 in the

aperture.
Silica LIGO II : PPRC ≈ 1200 Watts

Or:

Arm cavities become unstable.
Sapphire LIGO II : PPRC ≈ 3300 Watts
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Effects in LIGO II

Summary of Thermal Nastiness
LIGO II
Sapphire

LIGO II
Silica

(Watts) P ITM
a P

(c)
PRC P ITM

a P
(c)
PRC

Nominal Operation 1.20 2100 0.270 1300

Sideband Failure 0.17 280 0.010 50
Arm Cavity Gain Falloff 1.3 2200 0.070 350
Carrier Failure 2.0 3300 0.24 1200
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Melody Model of LIGO II

Sapphire LIGO II

ITM Radius 15.7 cm dn
dT 7.2 ppm/K

ITM Thickness 13.0 cm Thermal Expansion 5.5 ppm/K

Arm Cavity Waist 6.1 cm Thermal Conductivity 37 W/m/K

Coating Absorption 0.5 ppm Substrate Absorption 30 ppm/cm

Silica LIGO II

ITM Radius 19.0 cm dn
dT 8.7 ppm/K

ITM Thickness 15.4 cm Thermal Expansion 0.55 ppm/K

Arm Cavity Waist 6.1 cm Thermal Conductivity 1.4 W/m/K

Coating Absorption 0.5 ppm Substrate Absorption 0.5 ppm/cm
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Melody Model of LIGO II
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Thermal Compensation
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Intensity pattern of absorption:
Ia(x, y)
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Thermal Compensation

Corr ec t ed 
Wavefr ont

Radi ati ve
Shi el di ng

Radi ati ve
Heati ng

Intensity pattern of absorption:
Ia(x, y)

Apply radiative compensation:
Ic(x, y) = max Ia − Ia(x, y)
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Thermal Compensation

Corr ec t ed 
Wavefr ont

Radi ati ve
Shi el di ng

Radi ati ve
Heati ng

Intensity pattern of absorption:
Ia(x, y)

Apply radiative compensation:
Ic(x, y) = max Ia − Ia(x, y)

Resulting temperature increase:
∆T ≈ max Ia

8εσT 3∞
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Thermal Compensation

Corr ec t ed 
Wavefr ont

Radi ati ve
Shi el di ng

Radi ati ve
Heati ng

Intensity pattern of absorption:
Ia(x, y)

Apply radiative compensation:
Ic(x, y) = max Ia − Ia(x, y)

Resulting temperature increase:
∆T ≈ max Ia

8εσT 3∞

For a Gaussian beam :

∆T ideal =
Pa

4w2εσT 3∞

≈ 20
◦K

W

(
5 cm

w

)2
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Thermal Compensation

Figures of Merit

Quality : Reduction in scatter out of cavity mode, for
compensating 1 Watt of absorbed optical power.

C ≡ Sc

S0
≡ TEM00 scatter through corrected distortion

TEM00 scatter through initial distortion

Thermally Adaptive Optics in Advanced LIGO – p.9/34



Thermal Compensation

Figures of Merit

Quality : Reduction in scatter out of cavity mode, for
compensating 1 Watt of absorbed optical power.

C ≡ Sc

S0
≡ TEM00 scatter through corrected distortion

TEM00 scatter through initial distortion

Efficiency : Resulting mean temperature increase, as
compared to the “ideal”:

T ≡ ∆T c

∆T ideal

Thermally Adaptive Optics in Advanced LIGO – p.9/34



PART II: Heating Ring Thermal
Compensation
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Heating Ring Thermal Compensation

Design an “optic toaster” to fix anticipated distortions.
(e.g., a nichrome ring with some strategically placed shielding)

II
hh

Nichrome Ring

Test Mass

Shielding
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Heating Ring Thermal Compensation

The Procedure

1. Via generic 2D FEM, compute the distortion to
compensate (at unit power absorbed)
⇒ Transmission through ITM

2. Devise method of compensation (e.g., simple ring)

3. Calculate the compensator’s effect on boundary
conditions vs. relevant degrees of freedom (e.g.,
radiation pattern vs. ring radius, height, and power).

4. Apply to 2D FEM, and minimize C over relevant
degrees of freedom.

5. Examine results and devise improvements (adding
shielding, insulation, etc.) and return to item 3.
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Heating Ring Thermal Compensation
The anticipated distortion (w = 6 cm):
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Simple Heating Ring

Nichrome Heating Ring

Optic
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Simple Heating Ring
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C ≈ 10−2.1
T ≈ 6

Rr = 21.7 cm Hr = 7.6 cm
Pr

2πRr
= 14.0 W/cm
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Shielded Heating Ring

Aluminum Shield

Heating Ring
Optic

Improve efficiency by hiding the center of the optic from
the ring’s radiation.
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Shielded Heating Ring
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C ≈ 10−2.2
T ≈ 1

Rr = 22.3 cm Hr = 16.0 cm hs = 0.89
Pr

2πRr
= 4.1 W/cm
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Shielded Heating Ring on Insulated Optic
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C ≈ 10−4.0
T ≈ 1.3

Rr = 16.3 cm Hr = 20.5 cm hs = 0.99
Pr

2πRr
= 3.9 W/cm
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So Far...

The simple ring works, but is very inefficient (C ≈ 10−2.1,
T ≈ 6).

Shielding the center of the optic greatly improves
efficiency (C ≈ 10−2.2, T ≈ 1).

Insulating the radial edge of the optic further improves
correction quality (C ≈ 10−4.0, T ≈ 1.3).

Can we do even better?
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Shielded Heating Ring on Silica Compensation Plates

PD

Laser

Shielded Ring  
Compensator

Fused Silica
Compensation Plate
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Shielded Heating Ring on Silica Compensation Plates

Benefits:

Input Test Masses remain untouched.

For sapphire LIGO II: gain in efficiency due to lower
thermal conductivity of silica CP’s (i.e., more OPD per
watt of input).

Make the CP thin ⇒ edge insulation unnecessary.

Drawbacks:

Does not help stabilize arm cavity mode.

Increases system complexity (more optics).
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Shielded Heating Ring on Silica Compensation Plates
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C ≈ 10−4.1
T ≈ 0.2

Rr = 24.5 cm Hr = 14.0 cm hs = 0.90
Pr

2πRr
= 0.2 W/cm
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Melody Model of CP Compensated LIGO II
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Heating Ring Noise Considerations

Consider 20 Watts of ring power delivered (Pd) to
compensate 1 Watt optical absorption (Pa).

Relative power fluctuation Rd on delivered power
⇒ optical path fluctuations δx:

δx(ω) ≈ β

ρcω

Pa

πw2
Rd(ω)

≈ 5 × 10−12
m

(
100 Hz

ω

)(
β

10 ppm/◦K

)
Rd(ω)
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Heating Ring Noise Considerations

Consider 20 Watts of ring power delivered (Pd) to
compensate 1 Watt optical absorption (Pa).

Relative power fluctuation for delivered ring power:

Rd(ω) ≈ Rps(ω)

τrω︸ ︷︷ ︸
Power Supply Fluctuation

+

√
8kBTr

Pd︸ ︷︷ ︸
Blackbody Shot Noise

≈ 3 × 10−5 Rps(ω)

(
100 Hz

ω

)
+ 6 × 10−11/

√
Hz

To work everywhere , need power supply relative
fluctuation Rps(ω) . 2 × 10−6/

√
Hz at 100 Hz.
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PART III: Scanning Laser Thermal
Compensation
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Scanning Laser Thermal Compensation
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Scanning Laser Thermal Compensation

Assume fixed scan pattern and actuator beam waist.

Thermally Adaptive Optics in Advanced LIGO – p.21/34



Scanning Laser Thermal Compensation

Assume fixed scan pattern and actuator beam waist.

Actuator beam shining on mth point at unit power
generates the phase distortion Am(x, y) (an “actuation
function”), which can be calculated or measured (once).
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Scanning Laser Thermal Compensation

Assume fixed scan pattern and actuator beam waist.

Actuator beam shining on mth point at unit power
generates the phase distortion Am(x, y) (an “actuation
function”), which can be calculated or measured (once).

Given any actuator powers {Pm}, the resulting phase
distortion is easily calculated:

φ(x, y) =

M∑
m=1

PmAm(x, y)
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Scanning Laser Thermal Compensation

Assume fixed scan pattern and actuator beam waist.

Actuator beam shining on mth point at unit power
generates the phase distortion Am(x, y) (an “actuation
function”), which can be calculated or measured (once).

Given any actuator powers {Pm}, the resulting phase
distortion is easily calculated:

φ(x, y) =

M∑
m=1

PmAm(x, y)

Now, how do we go backwards? (i.e., get {Pm} given φ)
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Scanning Laser Thermal Compensation

Decompose φ(x, y) in the nonorthogonal basis {Am(x, y)},
and apply the transformation (matrix) which
orthogonalizes this space.
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Scanning Laser Thermal Compensation

Decompose φ(x, y) in the nonorthogonal basis {Am(x, y)},
and apply the transformation (matrix) which
orthogonalizes this space.

Resulting {Pm}’s are not all necessarily positive.
⇒ Add a DC offset to φ (i.e., piston) until all Pm > 0
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Scanning Laser Thermal Compensation

Decompose φ(x, y) in the nonorthogonal basis {Am(x, y)},
and apply the transformation (matrix) which
orthogonalizes this space.

Resulting {Pm}’s are not all necessarily positive.
⇒ Add a DC offset to φ (i.e., piston) until all Pm > 0

Must be able to cleanly generate piston.
⇒ actuator beam can’t be too small
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Scanning Laser Thermal Compensation

Decompose φ(x, y) in the nonorthogonal basis {Am(x, y)},
and apply the transformation (matrix) which
orthogonalizes this space.

Resulting {Pm}’s are not all necessarily positive.
⇒ Add a DC offset to φ (i.e., piston) until all Pm > 0

Must be able to cleanly generate piston.
⇒ actuator beam can’t be too small

Also, actuation functions must look sufficiently different.
⇒ actuator beam can’t be too big
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Implementation

1. Choose pattern and beam waist.
⇒ driven by distortion and attainable pattern frequency.

2. Via 3D FEM, compute actuation functions {An(x, y)}.

3. Compute the orthogonalization matrix and make sure
piston is clean. If not, tie together degenerate points or
make the beam size smaller and start over.

4. Compensate distortions φ(x, y) by integrating −φ
against {An} and applying the orthogonalization matrix.

5. Add piston until all powers are positive.
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Scanning Laser Example
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Scanning Laser Example

A few actuation functions...
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Scanning Laser Example
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Scanning Laser Noise Considerations

Sources of optical path fluctuations:

1. Pattern Repetition. Pattern of N points repeated at:

fp � k

πw2
aρc︸ ︷︷ ︸

Local thermal time constant

≈ 10 mHz

(
1 cm

wa

)2

2. Actuator Modulation. Beam switches on-and-off at

fm = fp × N

3. Broadband intensity noise on the laser.
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Scanning Laser Noise Considerations

Fluctuations due to Pattern Repetition:

OPD decays over whole aperture 2w, while laser
actuator (waist wa) shines on-and-off depositing mean
power Pm..

Occurs at pattern frequency fp (use 0.1 Hz for 1 cm
beam).

Maximal sensed fluctuation:

‖δx‖pat . βPm

ρcfpw2
a

≈ 60 nm

(
Pm

0.1 W

) (
0.1 Hz

fp

) (
5 cm

w

)2
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Scanning Laser Noise Considerations

Fluctuations due to Actuator Modulation:

OPD regularly rises abruptly at each actuation point.

Occurs at modulation frequency fm = fp × N (about 6
Hz for 61 points).

Maximal sensed fluctuation:

‖δx‖mod . w2
a

w2
‖δx‖pat . βPm

fpw2ρc

≈ 2 nm

(
Pm

0.1 W

) (
0.1 Hz

fp

) (
5 cm

w

)2
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Scanning Laser Noise Considerations

Broadband Fluctuations due to Intensity Noise:

Intensity noise ∆P (ω) on the actuator shining at radius
rm induces optical path fluctuations:

‖δx(ω)‖ ≈ β

ρcω

2∆P (ω)

πw2
e−2

r2
m

w2 < 3 × 10−18
m/

√
Hz

⇒ ∆P (ω) < 2 × 10−7 W√
Hz

e2
r2
m

w2

( ω

100 Hz

) ( w

5 cm

)2

Shot noise limit on 10 Watt CO2 beam:

∆Pshot = 6 × 10−10 W√
Hz

(
P

10 W

) 1
2
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PART IV: The Experiment
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Thermal Compensation Experiment
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Thermal Compensation Experiment
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Ring Experiment
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Ring Experiment

Fused Silica Optic (10 cm diameter, 8 cm height)
probed in transmission over 3 cm aperture.

CO2 laser expanded to 1,5 cm waist radius, 50 mW
absorbed in optic.

Ring compensator 13.4 cm in diameter, 0.5 cm thick,
held 11.9 cm off the optic’s face. 100 Watts maximum
input power.
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Ring Experiment
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Ring Results
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Ring Results vs. Model
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Ring Coupling Efficiency

Model fits well, but only 70

Watts should be necessary,

while 100 Watts are

provided. (Transmission?)
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Ring Coupling Efficiency
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Examine ring OPD vs.

electrical input power and

compare with model.
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Ring Coupling Efficiency
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data
ε
r
=1

ε
r
=0.65

Model fits well, but only 70

Watts should be necessary,

while 100 Watts are

provided. (Transmission?)

Examine ring OPD vs.

electrical input power and

compare with model.

Roughly consistent with

εr = 0.65.

⇒ Pr

2πRr
≥ 2.5 W/cm

is difficult to generate.
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Scanned Laser Experiment
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Scanned Laser Experiment

Fused Silica Optic (10 cm diameter, 8 cm height)
probed in transmission over 3 cm aperture.

CO2 beam waist radius w = 0.2 cm with hexagonal
pattern spacing 0.5 cm
(same as example previously discussed).

Distortion generated by ∼ 20 mW focused to 300 µm
spot.

Control system:
1. Acquires wavefront data
2. Calculates necessary powers from model
3. Updates pattern powers
4. Waits 20 minutes and returns to step 1.
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Scanned Laser Data
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Conclusions to Date
Thermal Effects in LIGO II

ITM distortion readily knee-caps sideband gain in PRC
(GW sidebands in SRC too?) with little effect on carrier
gain.

Large ITM distortion hinders carrier coupling into arm
cavity.

Massive ITM distortion (λ/4) prevents instrument from
working at all.

Arm cavity surface distortions make carrier mode
∼ 20% larger (which increases exponentially with
absorbed power).
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Conclusions to Date
Thermal Effects in LIGO II (cont.)

LIGO II
Sapphire

LIGO II
Silica

(Watts) P ITM
a P

(c)
PRC P ITM

a P
(c)
PRC

Nominal Operation 1.20 2100 0.270 1300

Sideband Failure 0.17 280 0.010 50
Arm Cavity Gain Falloff 1.3 2200 0.070 350
Carrier Failure 2.0 3300 0.24 1200
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Conclusions to Date
Generic Thermal Compensation

For “ideal” thermal compensation, have to live with a
temperature increase:

∆T ideal =
Pa

4w2εσT 3∞
≈ 20

◦K

W

(
5 cm

w

)2

⇒ compensation more difficult on smaller scales.

⇒ compensation impossible (?) at cryogenic
temperatures.
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Conclusions to Date
Heating Ring Thermal Compensation

Engineered solution for anticipated azimuthally
symmetric distortions.

Heating ring works (C ≈ 10−2.1, T ≈ 6), but shielded ring
is more efficient (C ≈ 10−2.2, T ≈ 1).

Can actuate anywhere in the instrument with the
shielded ring.

Reducing heat flow out the radial edge (e.g., insulation)
improves the quality of correction (C ≈ 10−4.0, T ≈ 1.3).

Actuating on a compensation plate appears to work the
best, at the cost of losing control over the arm cavity
mode (C ≈ 10−4.1, T ≈ 0.2).
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Conclusions to Date
Heating Ring Thermal Compensation (cont.)

Model agrees well with experiment, which
demonstrated C = 10−2 for 50 mW absorbed from 1.5
cm beam on a fused silica optic.

Ring powers greater than 2.5 W/cm difficult to achieve
(emission enters optic’s transmissive band).
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Conclusions to Date
Scanning Laser Thermal Compensation

Contingency plan to deal with nonuniform optical
absorption.

Can safely (?) actuate on Compensation Plates in PRC
(not on arm cavity faces!).

Factor of 10 or more correction, even for absorption on
spatial scales smaller than the actuation pattern
spacing.

Means of design and control well understood.

Model agrees well with experiment, which
demonstrated C = 10−1 for 20 mW absorbed over a 300
µm spot on a fused silica optic.
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Schedule for Thermal 
Compensation

Active optics compensation 993d 29 Oct ‘02 17 Aug '06

DRR 0d 29 Oct ‘02 29 Oct '02
Prelim design 6mo         29 Oct ‘02  14 Apr '03
Prototype fabrication 3mo  15 Apr ‘03 07 Jul '03
Ship to Gingin 0d 07 Jul   ‘03 07 Jul '03
Prototype test 2mo 08 Jul   ‘03 01 Sep '03
Data back from Gingin 0d 01 Sep  ‘03 01 Sep '03
Final design 3mo 02 Sep ‘03 24 Nov '03
Clearance and fit test 
Prototype fab 3mo 25 Nov '03 16 Feb '04
Ship to LASTI 0d 16 Feb '04 16 Feb '04
Fabrication 12mo Apr '05 02 Mar '06
Assembly 6mo 03 Mar '06 17 Aug '06
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Preliminary Design Knowledge 
Gaps

Gravitational wave sideband distortion and its effect on 
sensitivity. Generated within the cavity so no distortion nulling
due to prompt reflection. Greater understanding through 
incorporation in Melody (Ray Beausoleil ~ End of November 
02).  (Modeling)
Re-optimization of the thermal compensation scheme to 
minimize the HR surfaces changes. (Modeling)  
Accurate 2D absorption maps of Sapphire to aid in actuator 
selection (negative or positive dN/dT actuator plates). 
(Measurements required) 
Completer treatment of the displacement noise associated with 
scanning CO2 laser (Modelling and measurements)
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Gingin High Power Test Facility 
(HPTF), Western Australia
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Gingin HPTF Test No. 1

~3W 72m

ITM

λ µ=1.064 m

Input Test Mass (ITM)
Diameter: 100mm
Thickness: 50mm
Material: Sapphire ( -axis)
flat

a

w =8.5mmo

AR coating
(<300ppm)

HR coating
(T=1500+500ppm)

Diameter: 150mm
Thickness: 80mm
Material: Sapphire ( -axis)
Radius of Curvature: 750+100m
HR coating: T<50ppm

m

<intra-cavity power~2kW>

Measure distortion of input test mass (ITM) due to absorption of
substrate material.

ETM

End Test Mass (ETM)
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Gingin HPTF Test No. 2

~50W 72m

ITM

λ µ=1.064 m
w =8.5mmo

AR coating HR coating
(T=1500+500ppm)

<intra-cavity power~100kW>

Characterize distortion of HR coating due to heating,
by .reversing ITM

- Use same optics, reversing ITM.
- Higher input power (~50W).
- Higher intra-cavity power (~100kW).

ETM
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Summary

More modeling required to fully set design 
requirements (Particularly SRM modes)
Greater knowledge of the inhomogeneous spatial 
nature of the absorption of Sapphire (Finalize Design)
Gingin is set up to explore the effects on Sapphire of 
high average circulating power
It is not clear from a thermal compensation 
prospective, what LIGO will learn from the current 
Gingin plan unless larger spot sizes can be used 
somehow.
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