

LIGO Data Archive Selection

Stuart Anderson

Presentation to breakout session on LIGO computing NSF Annual Review

24 October 2002

LIGO G020498-00-E LIGO Laboratory 1

LIGO Data Archive Selection

(S2 data will exceed current disk capacity at Observatories)

- Current Status
- Hierarchical Storage Management (HSM) selection:

HPSS vs SAM-QFS

- » Executive summary
- » Technical comparison
- » Validation tests
- » Cost comparison
- » Recommendation

LIGO G020498-00-E LIGO Laboratory 2

Current Status

- Observatories
 - » 5/10 TB Fibre Channel (FC) disk (LLO/LHO)
 - » 2.2 TB Integrated Drive Electronics (IDE) disk
 - » 1.5 TB tape robot
- Archive Center
 - » 2 TB FC disk
 - » 20 TB IDE disk
 - » 1.2 PB tape silo
 - » 54 TB HPSS frame archive
- Science runs
 - » S1 13 TB
 - » S2 47 TB
 - » Per annum 270 TB

HPSS vs SAM-QFS Executive Summary (order of importance)

HPSS advantages

- » Several years of experience
- » Free at Caltech
- » 54TB successfully stored
- » Scalability (raw data)

SAM-QFS advantages

- » Simplicity (both use and administration)
- » License cost allows for use at observatories
 - Media import/export
- » Stability (asymptotic performance with increasing load vs. crash)
- » Metadata performance (x1000)
- » Reduced dependency on CACR
- » Disaster recovery (GNU TAR)
- » Single vendor solution (server, software and OEM storage)

HPSS vs SAM-QFS Technical Comparison

	HPSS	SAM-QFS
Topology	Network based	Single server
1 0,	3 rd party transfer	(recent demo at 830MB/s)
Metadata	Nested transactional database	Inode (1000x performance)
	(roll back changes)	Traditional backup
Tape format	Raw data only	GNU Tar (disaster recovery)
Software	AIX/Solaris	Solaris
	DCE + Encina +	Single package
User Interface	FTP (PFTP)	POSIX filesystem (ls, emacs,)
	hsi shell	QFS (already selected)
Data migration	Raw data copy	Physical media ingestion
	(extra tape drives)	Metadata copy

LIGO G020498-00-E LIGO Laboratory 5

HPSS vs SAM-QFS Validation

> HPSS

- » Archived 54 TB/1.3 M files of frame data over multiple years.
 - Very little retrieval due to difficulty of use, I.e., traditional backup.
 - Even though network bandwidth was larger than tape I/O, the E7 data replication to UWM was done via labor intensive tape shipping/ingestion.

> SAM-QFS

- » Archived all of S1 (13 TB/198 k files).
- » Retrieved every byte in 1 week with 2 tape drives.
 - Unattended weekend run at 27.6 MB/s.
- » Each file positively verified to have the correct MD5SUM from IDE-RAID system at 227 MB/s.
- » Retrieved 273 GB of early S1 data while archiving later data without any performance degradation, I.e., no tape thrashing.
- » S1 data replicated to UWM from QFS until UWM disk full.

HPSS vs SAM-QFS Cost Comparison

	Caltech	Observatories
HPSS	Covered by CACR MOU in exchange for 1 FTE (unlimited size)	\$300k + \$100k/yr + 1-2 FTE (per observatory)
SAM-QFS	\$0.046/GB (2001) \$0.400/GB (2002)	\$0.046/GB (2001) \$0.400/GB (2002)

Estimate that LDAS integration to SAM-QFS is free and that HPSS is 1 man-year.

Note: Tape (\$0.4/GB), Disk (\$4/GB)

HPSS vs SAM-QFS Recommendation

Select SAM-QFS over HPSS for each of the following sufficient reasons:

- » SAM-QFS supports the import/export of original tapes.
 - HPSS fails for both technical and financial reasons.
- » SAM-QFS will allow 1yr of automated data access at each Observatory.
- » SAM-QFS should allow LDAS (and other?) direct access to deep archive.
- » In my opinion, SUN will drop support for HPSS unless they win a large government contract leaving us stuck with IBM hardware and OS.
- When the next best thing comes along in a few years we will be able to migrate our data using ANY computer system that supports the FC tape drives with the data and is able to run GNU Tar.
- » To do a directory listing of the current LIGO archive in HPSS takes more than 24hr, whereas in SAM-QFS it is extrapolated from the 1/7th size S1 dataset to be just 4min.