

BicoMon

Steve Penn, Hobart and William Smith Colleges LSC Meeting — August 2002 LIGO Hanford Observatory

LIGO-G020390-00-Z

Synopsis

• Introduction to Higher Order Statistics

- » 1D: Correlation, Coherence, Power Spectra
- » 2D: Bicorrelation, Bicoherence, Bispectrum
- Monitor Update
- Future work

What are Higher Order Statistics?

- 1D Statistics:
 - » Correlation: $C_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) d\tau \iff X(f) Y^*(f) = S_{xy}(f)$
 - » Power Spectral Density: $C_{2x}(t) \iff X(f) X^*(f) = S_{2x}(f)$

» Coherence:
$$C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{2x}(f) S_{2y}(f)}}$$

- Tells us power and phase coherence at a given frequency

LSC • August 2002

Second Order Statistics

• 2D Statistics:

LIGO

» Bicumulant:

 $C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) z(t'+\tau) d\tau \iff X(f_1) Y(f_2) Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$

» Bispectral Density:

$$C_{3x}(t) \iff X(f_1)X(f_2)X^*(f_1+f_2) = S_{3x}(f_1,f_2)$$

» Bicoherence:

$$C_{xyz}(f) = \frac{S_{xyz}(f_1, f_2)}{\sqrt{S_{2x}(f_1) S_{2y}(f_2) S_{2z}(f_1, f_2)}}$$

- Tells us power and phase coherence at a coupled frequency

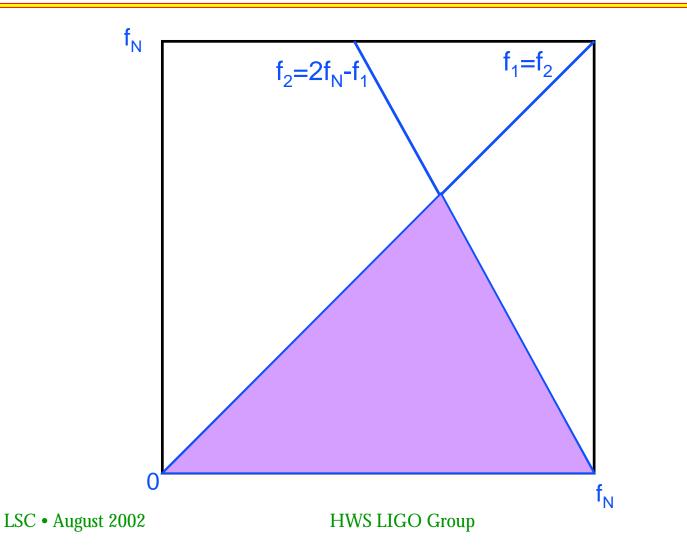
LSC • August 2002

Zero-lag Cumulants

Mean	Variance	Skewness	Kurtosis
$C_{x}(0)$	$C_{2x}(0)$	$C_{3x}(0)$	$C_{4x}(0)$
		0 if Symmetric	0 if Gaussian

Useful statictical values, but...

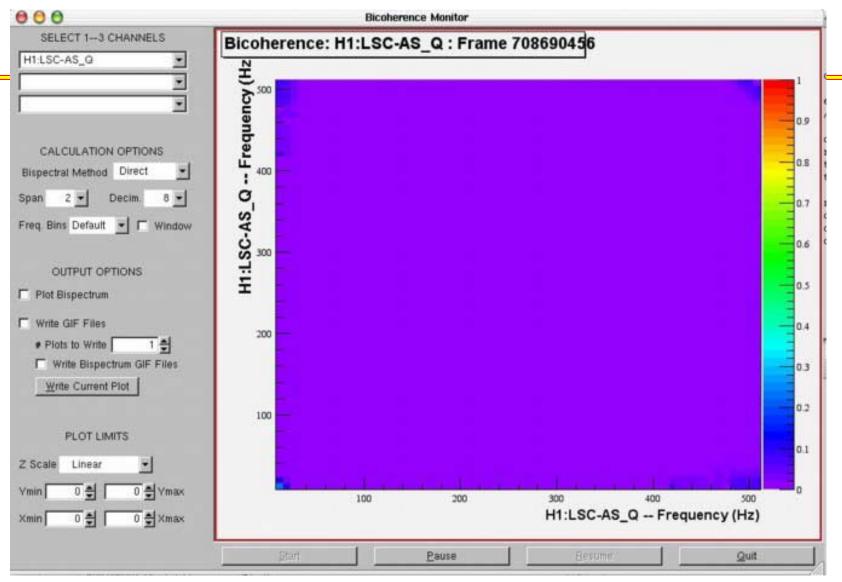
Skewness = 0does not prove symmetryKurtosis = 0does not prove GaussianityVariations in skew and kurtosis not well quantified.

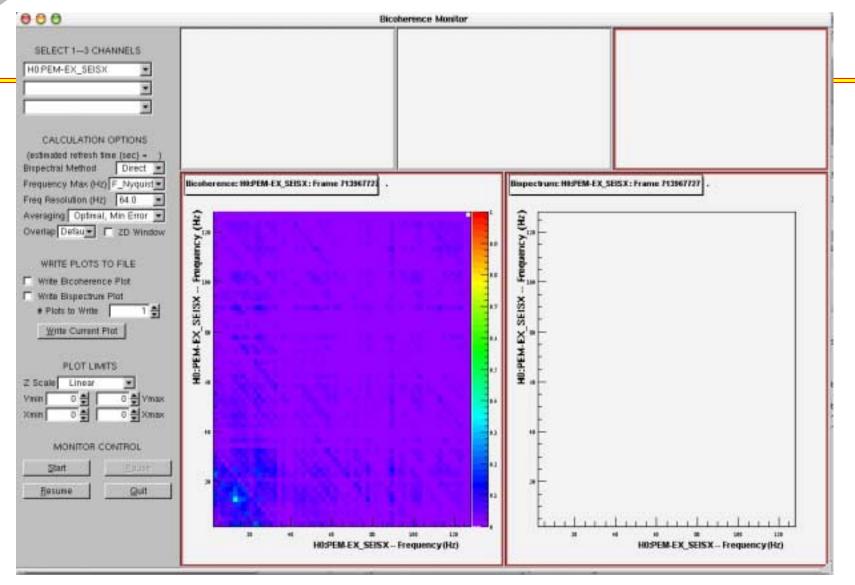

Why Higher Order Statistics?

- For a Gaussian process: $C_{nx}(t) = 0$, for n > 2
- For independent processes:

$$z(t) = x(t) + y(t), \quad C_{nz}(t) = C_{nx}(t) + C_{ny}(t) \xrightarrow{n>2} C_{ny}(t)$$

- Allows for separation of Gaussian process for n>2
 - » Visual check of frequency coupling and phase noise
 - » Statistical test for the probability of gaussianity and linearity
 - » Iterative process to reconstruct nongaussian signal from the higher order cumulants


Auto-Bispectrum Unique Area


Monitor Features

- Plots (cross-)bicoherence, (cross-)bispectrum, & PSD's
 - » Operates on 1–3 channels
 - » User-specified Bispectrum method (Direct / InDirect)
 - » Automatically decimates to the lowest channel rate.
 - » User selected f_{max} and Δf Limited to factor 2^n
 - » User specifies the accuracy
 - » Monitor Outputs the Time span (gives user the update time)
 - » User-specified Bispectrum method (Direct / InDirect)
 - » Windowing: Optimized Rao-Gabr windowing
 - » Outputs GIF files of the plots
 - » Help facility

LIGO

LSC • August 2002

LSC • August 2002

Improvements / Future Directions

- GUI, frequency-selection method, freq. resolution
- Vijay Chickarmane and I are working together to monitor the time variation of regions of high bicoherence. --> Background monitoring

- we are devising a method to fit the bilinear features for tracking of coefficients and/or subtraction