Progress on Thermal Noise From Optical Coatings

Gregory Harry

Massachusetts Institute of Technology

- Suspensions and Thermal Noise Working Group -

August 19-22, 2002 LSC Meeting Hanford, WA

Context

Previously measured coating loss:

- SiO₂/Ta₂O₅ on silica substrate $\phi = 1.0 \pm 0.3 \cdot 10^{-4}$
- AL_2O_3/Ta_2O_5 on silica substrate $\phi = 6.4 \pm 0.6 \ 10^{-5}$

Theory to predict thermal noise from ϕ_{coat}

FEA code to compute energy in coating

Implications for advanced LIGO

- silica mirrors BNS range 115 Mpc → 100 Mpc
- sapphire mirrors BNS range 195 Mpc → 170 Mpc

Measurement

Thin fused silica samples (3 inch diameter by 0.1 inch thick)

Samples suspended from monolithic, double-bob suspensions (see Steve Penn s presentation)

Q of normal modes measured before and after coating

- two butterfly modes (n=0, l=2)
- single drumhead (n=1, l=0)

Measurement, cont d

Birefringence sensor used to readout oscillating strain in normal mode

Data fit to full damped sinusoid to get Q

FEA results used to determine energy in coating for each mode

?_{coat} deducted from Q s and FEA

LIGO

Finite Element Analysis (FEA)

Make Algor model of samples

- $f_{butterfly}$ = 2659 Hz
- $f_{drumbead}$ = 4038 Hz

Use Ocean to get energy ratio in coating (for 8 ?m coating)

- butterfly 1.19 x 10⁻²
- drumhead 1.26 x 10⁻²

Analyses

Determine if loss due to factor other than coating

uncoated sample

Determine if loss scales with coating thickness or with number of layers

- 2 layers, $\lambda/4 \text{ SiO}_2$ and $\lambda/4 \text{ Ta}_2\text{O}_5$
- 30 layers, $\lambda/4$ SiO₂ and $\lambda/4$ Ta₂O₅
- 60 layers, $\lambda/8$ SiO₂ and $\lambda/8$ Ta₂O₅

Determine if SiO₂ or Ta₂O₅ is lossier

- 30 layers, $\lambda/8$ SiO₂ and $3\lambda/8$ Ta₂O₅

Annealing Results

Sample annealed at 900° C

Mode	Annealing	Frequency	Q
Butterfly 1	Unannealed	2720	11 million
	Annealed	2717	42 million
Butterfly 2	Unannealed	2720	14 million
	Annealed	2718	54 million

Sample annealed at 600° C

Mode	Annealing	Frequency	Q
Butterfly 1	Unannealed	2779	15 million
	Annealed		
Butterfly 2	Unannealed	2781	12 million
	Annealed	2781	44 million

G020324-00-R

Coating Results 2 layers

Samples coated with 2 layers of $\lambda/4$ SiO₂ and $\lambda/4$ Ta₂O₅

Mode	Frequency	Q
Butterfly +	2679	5.4 million
Butterfly x	2681	6.5 million

Mode	Frequency	Q
Butterfly 1	2711	8 million
Butterfly 2	2722	9 million

Coating Results 30 layers even

Samples coated with 30 layers of $\lambda/4$ SiO₂ and $\lambda/4$ Ta₂O₅

Mode	Frequency	Q
Butterfly +	2708	528,000
Butterfly x	2840	

Mode	Frequency	Q
Butterfly 1	2732	536,000
Butterfly 2	2735	549,000
Drumhead	4130	433,000

Coating Results 30 layers uneven

Samples coated with 30 layers of $\lambda/8$ SiO₂ and $3\lambda/8$ Ta₂O₅

Mode	Frequency	Q
Butterfly 1	2721	400,000
Butterfly 2	2723	403,000
Drumhead	4107	285,000

Mode	Frequency	Q
Butterfly 1	2700	409,000
Butterfly 2	2694	404,000

G020324-00-R

Coating Results 60 layers

Samples coated with 60 layers of $\lambda/8 \text{ SiO}_2$ and $\lambda/8 \text{ Ta}_2\text{O}_5$

Mode	Frequency	Q
Butterfly +	2712	548,000
Butterfly x	2690	487,000
Drumhead	4057	439,000

Mode	Frequency	Q
Butterfly +	2786	502,000
Butterfly x	2782	520,000

G020324-00-R 11

Coating \(\phi \) s

Distributions of Loss Angle

Interpretation

Annealing can reduce silica loss, even for thin samples

$$\phi_{\text{coat}} = 1.7 \pm 0.2 \times 10^{-4}$$

Loss scales with coating thickness

No significant effect from first or subsequent layers

Ta₂O₅ is lossier than SiO₂

$$\phi_{\text{Ta}_2\text{O}_5} = 2.7 \pm 0.7 \times 10^{-4}$$

$$\phi_{SiO_2} = 0.7 \pm 0.9 \times 10^{-4}$$

Next Steps

Anneal current coated samples

- limited maximum temperature due to Ta₂O₅
- adjust cooling rate

Try other materials and combinations

- SiO₂/Al₂O₃ (need ~80 layers to get HR)
- Nb₂O₅, HfO₂, ZrO₂ (optically lossy)

Changes to coating process

- adjust purity of target materials
- change substrate temperature
- change ion beam energy

14

Predicting Thermal Noise from Coating?

$$\phi_{\text{readout}} = \phi_{\text{bulk}} + \frac{1}{\sqrt{\pi}} \frac{(1 - \sigma_{\text{sub}})}{(1 - 2\sigma_{\text{sub}})} \frac{d}{w} \left(\frac{Y_{\text{coat}}}{Y_{\text{sub}}} \phi_{\text{coat}} + \frac{Y_{\text{ub}}}{Y_{\text{coat}}} \phi_{\text{coat}} \right)$$

Still needed

- value for ?_{coat+}
- more complete accounting for coating anisotropy (could have similar problem/solution in sapphire)
- accounting for finite size of mirrors

Implications for Advanced LIGO

sapphire mirrors

fused silica mirrors

Comparison of $?_{coat} = 1 \times 10^{-4}$ and $?_{coat} = 4 \times 10^{-4}$ 5.5 cm beam spot, 30 kg masses

Goals

How large can ?_{coat} be without affecting the astronomical reach of advanced LIGO?

Choose reduction of 5 Mpc for BNS as limit

Fused silica mirrors
Sapphire mirrors

$$?_{coat} < 3 \times 10^{-5}$$

 $?_{coat} < 1 \times 10^{-5}$

How realistic is this? (while maintaining low optical loss)