

Multi-detector searches of inspirals: Current strategies & proposed improvements

by

Sukanta Bose

Washington State University Pullman

LSC Meeting, LIGO, Hanford
August 20, 2002
Morning ASIS Session

DCC No.: LIGO-G020322-00-Z

I. Single detector (1D) statistic:

$$\Lambda = |C| = \left[|C_0|^2 + |C_{\pi/2}|^2 \right]^{1/2} ,$$

where $C:=\langle S,x\rangle=\langle S_0,x\rangle+i\langle S_{\pi/2},x\rangle$;

S = template & x = (noisy) data.

In the stationary-phase approximation,

$$ilde{S}(f) \propto \left(rac{f}{f_s}
ight)^{-7/6} \exp\left[-i\Psi(f)
ight]$$
 ;

$$\Psi(f;\vartheta^{\nu})=2\pi\varphi_{\mu}(f;\vartheta^{\nu})\vartheta^{\mu},\ \mu,\nu=0,1,....$$

II. Multiple coaligned detectors:

$$\Lambda_{\mathsf{Net}} = \left| \sum_{I=1}^{M} C^I(au_I) \right| \;\; ,$$

where au_I is an offset time and

$$C^I := \langle S^I, x^I \rangle_{(I)} = \langle S^I_0, x^I \rangle_{(I)} + i \langle S^I_{\pi/2}, x^I \rangle_{(I)}$$

Two arbitrary interferometers

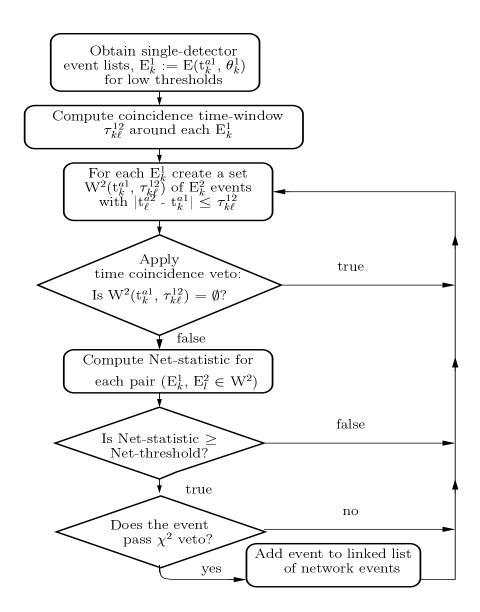
Statistic:

$$\begin{aligned} \Lambda(\tau)|_{\widehat{\epsilon},\widehat{\psi}} &= \parallel \mathsf{C}(\tau) \parallel \\ &= \left[|C_1(\tau)|^2 + \left| C_2(\tau;\tau_{(2)}) \right|^2 \right]^{1/2} , \end{aligned}$$

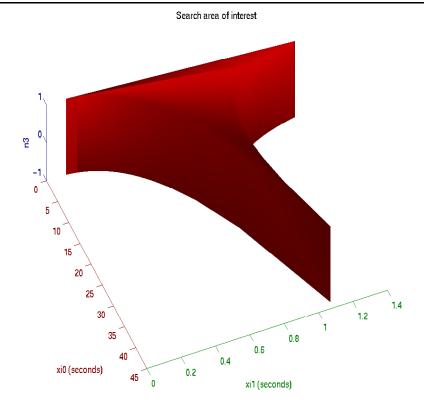
which does *not* depend on $\{\psi, \epsilon\}$.

 $\Lambda(\tau)|_{\widehat{\epsilon},\widehat{\psi}}$ depends only on the sum of the " ρ^2 " statistics for the two detectors evaluated at the offset times τ and $\tau+\tau_{(2)}$, respectively.

2D search algorithm



2-detector parameter space



Above, ξ_0 and ξ_1 are the Newtonian and 1PN contributions, resp., to a chirp's dwell time.

Example. The 2D network of H1 and L1: One-step search on a 3-d parameter space, $\{f_s\xi_0, f_s\xi_1, n_3\}$, with metric:

$$g_{ij} = \begin{pmatrix} 0.0817 & 0.122 & 0 \\ \cdot & 0.185 & 0 \\ \cdot & \cdot & 3.615 \end{pmatrix} ,$$

where $f_s=40$ Hz (Seader, SB, in prep.). This extends the work in Owen, PRD 1996, & Balasubramanian et al., PRD 1996.

Template spacing is determined by finding the eigencoordinates, $\{x_1, x_2, n_3\}$, in which the above metric is diagonalized:

$$(dx_1, dx_2, dn_3) =$$

$$(0.71, 9.25, 0.19) \left(\frac{1-MM}{0.03}\right)^{1/2}$$

Work nearing completion

Multi-detector (MD) statistic:

$$\Lambda|_{\hat{\epsilon},\hat{\psi}} = \|\mathbf{C}_{\mathcal{H}}\| = (|C^{+}|^{2} + |C^{-}|^{2})^{1/2}$$

where

$$C^{\pm} := \mathsf{C} \cdot \hat{v}^{\pm}$$
.

Here, (\hat{v}^+, \hat{v}^-) are two orthonormal real vectors. They form a basis in which any complex vector in \mathcal{H} can be expanded. The vectors \hat{v}^\pm depend on the detector orientations and the source-direction angles, i.e.,

$$\hat{v}^{\pm} = \hat{v}^{\pm}(\theta, \phi; \boldsymbol{\alpha}_{(1)}, ..., \boldsymbol{\alpha}_{(M)})$$
.

Pai, Dhurandhar, SB, PRD 2001

Example. Three coaligned LIGO-I detectors at the locations of LHO, LLO, and VIRGO: One-step search on a 4-d parameter space, $\{f_s\xi_0, f_s\xi_1, n_3, n_1\}$, with metric:

$$g_{ij} = \begin{pmatrix} 0.0817 & 0.122 & 0 & 0 \\ \cdot & 0.185 & 0 & 0 \\ \cdot & \cdot & 11.97 & 8.823 \\ \cdot & \cdot & \cdot & 102.98 \end{pmatrix} .$$

Template spacing is determined by finding the eigencoordinates, $\{x_1, x_2, \Omega_1, \Omega_2\}$, in which the above metric is diagonalized:

$$(dx_1, dx_2, d\Omega_1, d\Omega_2) =$$

$$(0.95, 12.3, 0.05, 0.15) \left(\frac{1-MM}{0.03}\right)^{1/2}$$

Hierarchical <u>network</u> searches

Example. L1-H1 (with LIGO-I noise): Template spacings given by $(dx_1, dx_2, dn_3) = (0.71, 9.25, 0.19) \left(\frac{1-MM}{0.03}\right)^{1/2}$

Take $Q_{0 \text{ max}} = 1/\text{yr}, \quad Q_{d \text{ min}} = 0.95,$ $S_{\text{min}} = 10, \quad \xi_{\text{max}} \sim 140 \text{ sec.}$ Then by increasing, e.g., the $x_{1,2}$ spacing 3 times and the n_3 spacing 4 times, we get

 $Q_d(\eta=7.4)\simeq 0.96>Q_{d~min}$ and $Q_0(\eta=7.4)\simeq 0.1/{\rm yr}< Q_{0~max}$. Computational gain is $\sim {\it 3}^2\times {\it 4}={\it 3}6$

Computational gain in 2 steps

Network	$\overline{n_{tot}}$	Speed	Gain
	(in 10 ⁶)	(Tflops)	
LIGO-I	0.2	0.04	25
L1-H1	8	0.5	100
L1-H1-LV	1500	10 ³	400

Assumed: 2PN chirp, $m_{\rm min}=0.5M_{\odot}$, minimal match of 97%, and data sampled at \sim 2 kHz. "L1-H1-LV" denotes three coaligned LIGO-I type detectors placed in Hanford, Livingston, and Pisa.

Time decimation increases the gain by a factor of ~ 4 .

Future Work

- 1. Test LAL code for multiple-interferometer searches of inspirals
- 2. Develop LAL code for hierarchical multidetector searches of inspirals
- 3. A FCT-based multi-detector strategy
- 4. Estimation of parameters based on multidetector search results