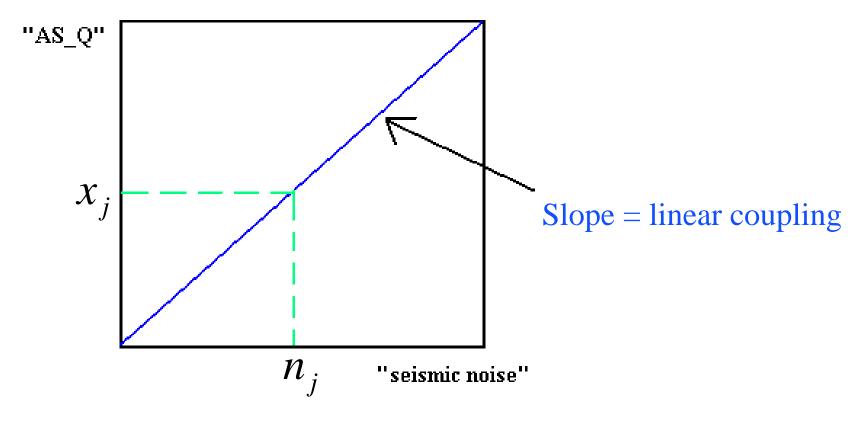


Beyond the PSD: Discovering hidden nonlinearity


Tiffany Summerscales Penn State University

LIGO-G020309-00-Z

Coupling in LIGO data

Coupling in LIGO data

Or non-linearly: e.g., hysteresis "AS_Q" $Gain = (1 + \boldsymbol{g} n_{j-k})$ $x_j = n_j (1 + \boldsymbol{g} n_{j-k})$ X_{j} γ: nonlinearity parameter n_i "seismic noise"

Coupling in LIGO data

- Model: $x_j = n_j(1 + gn_{j-k})$
- Suppose n_j white: what is autocorrelation
 (PSD) of x_j?
 - » $C(I) = \langle x_j x_{j-l} \rangle = \langle n_j (1 + gn_{j-k}) n_{j-l} (1 + gn_{j-k-l}) \rangle = (1 + \gamma^2) \delta_{1,0}$ » x are white!
- Conclusion: PSD inadequate tool for discovering non-linear couplings
- Question: How to discover non-linear couplings?

LIGO-G020309-00-Z

August 21, 2002

Non-linear couplings lead to correlations in time

- Correlations still present, just non-linear and, so, hidden from linear tools
 - » $x_i = n_i (1 + gn_{i-k})$: Signal now depends on noise now, and noise earlier
- Uncorrelated signals lead to Poisson distributed events
 - » Event? Sample above a threshold
- Correlated signals lead to non-Poissonian distribution
 - » Clustering or anti-clustering in time
- Discovery tool: test for Poisson distribution of event data

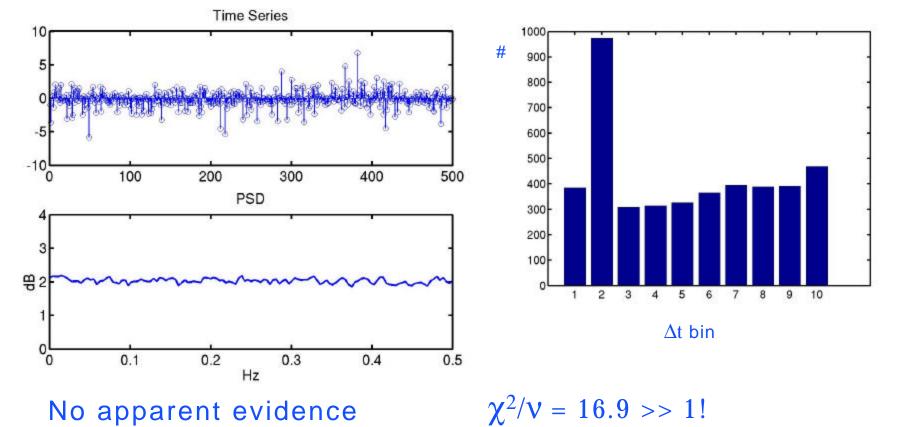
LIGO-G020309-00-Z

August 21, 2002

Test for non-linear coupling

• Identify events

- » Set a threshold and classify above-threshold data points as "events"
 - events for non-correlated data will be Poisson distributed in time
 - events for data with correlations will be "bunched" and not be Poisson distributed


Test for Poisson distribution

- » Poisson distribution of events in interval T equivalent to exponential distribution of interval Dt between successive events
- » Bin intervals between events
 - Find mean rate
 - Choose bins with exponentially increasing width so that for Poisson data expected number of events in each bin is same
- » Evaluate χ^2 fit to exponential distribution
 - Degrees of freedom v? Number of bins less 2 (loose one d.o.f. because we calculated mean rate from data)
- » Non-linear coupling? χ^2/ν statistically different from unity

LIG0-G020309-00-Z

Example (k=5, γ =1)

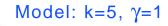
of nonlinearity

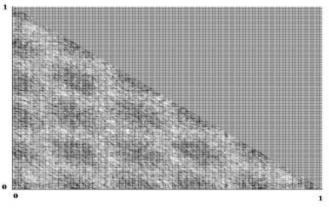
LIG0-G020309-00-Z

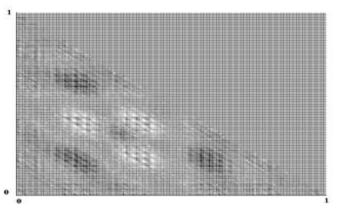
August 21, 2002

Penn State University

Nonlinearity clearly apparent


Application: E7 Playground


100 H2:LSC-AS_Q in E7 # 90 playground data 80 GPS start time: 694271952 70 » 60 Duration: 1600s **»** Demodulate, downsample, whiten to 20-84 Hz band 30 20 Time Series 20 40 60 80 100 At bin # • $\chi^2/\nu=22.1$ 100 200 300 400 500 PSD Non-linear correlation detected » » Use χ^2 to set CI on γ : 떙 $\boldsymbol{g} \in [0.9, 2.1]$ with 90% confidence 15 Hz $g \in [0.8, 2.8]$ with 98% confidence 25 10 20 30


Bispectra

- Power Spectral Density:
 - » $|X(\omega)|^2$
- Bispectrum:
 - » $X(\omega_1) X(\omega_2) X(\omega_1+\omega_2)$
- Nonlinearity apparent in bispectra; however ...
 - » bispectra computationally expensive and difficult to interpret
 - » $\chi^2 \, \text{test}$ inexpensive and simple to interpret
 - ≈ χ² test sensitive to any nonlinear coupling hysterisis-type correlation
 - bispectra zero for large γ in model problem

H2:LSC-AS_Q playground data

LIGO-G020309-00-Z

Penn State University

August 21, 2002

What's Next?

- Investigate S1 data
 - » Study data in sub-bands looking for frequency dependent noncouplings
- DMT Monitor
 - » Currently matlab tool

LIG0-G020309-00-Z