

Advanced LIGO

David Shoemaker LIGO PAC 28 June 2002

Assumptions for LIGO future

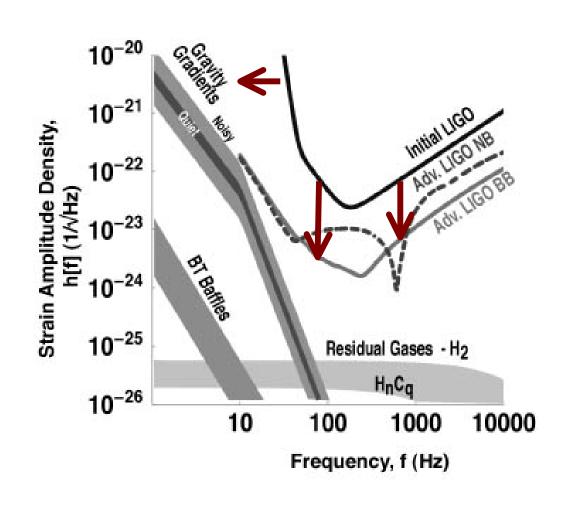
- LIGO mission: detect gravitational waves and initiate astronomy
- Next detector
 - » Should be of astrophysical significance if it observes GW signals or if it does not
 - » Should be at the limits of reasonable extrapolations of detector physics and technologies
 - » Should lead to a realizable, practical instrument
- An effort of the entire LIGO Scientific Collaboration (LSC)
 - » LIGO Lab and other LSC members in close-knit teams
 - » R&D and designs discussed here are from the Collaboration including the Lab

Choosing an upgrade path

- Maximize astrophysics in the coming decade
 - » Must "fully" exploit initial LIGO
 - » Any change in instrument leads to lost observing time
 - » Minimum 1.5 years required between decommissioning one instrument and starting observation with the next
 - » → Want to make one significant change, not many small changes
 - Advanced LIGO searches in ~2.5 hours what initial LIGO does in ~1 year
- Technical opportunities and challenges
 - » Exploit evolution of detector technologies since the freezing of the initial LIGO design
 - » 'Fundamental' limits: quantum noise, thermal noise, Newtonian background provide point of diminishing returns (for now!)

Present, Advanced, Future limits to sensitivity

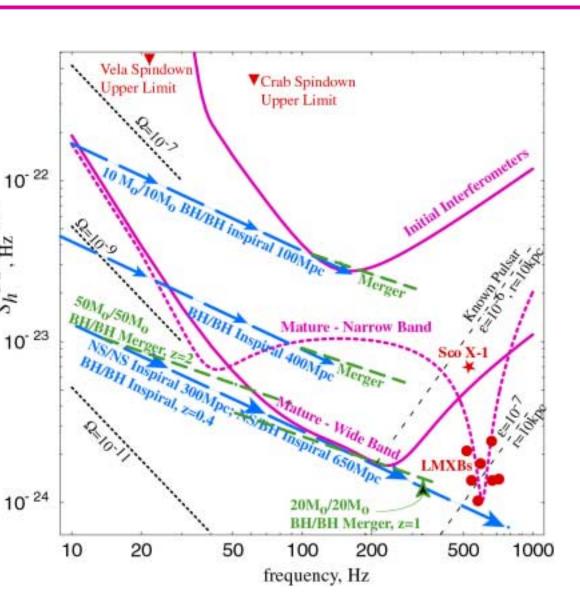
Advanced LIGO


- » Seismic noise 40→10 Hz
- » Thermal noise 1/15
- » Shot noise 1/10, tunable
- » Initial → Advanced: factor <1000 in rate</p>

Facility limits

- » Gravity gradients
- » Residual gas
- » Scattered light

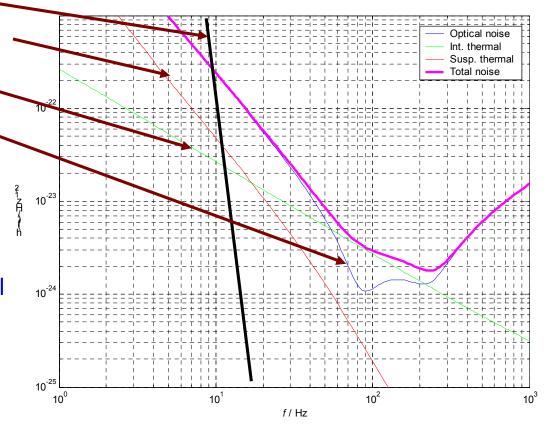
Beyond Adv LIGO

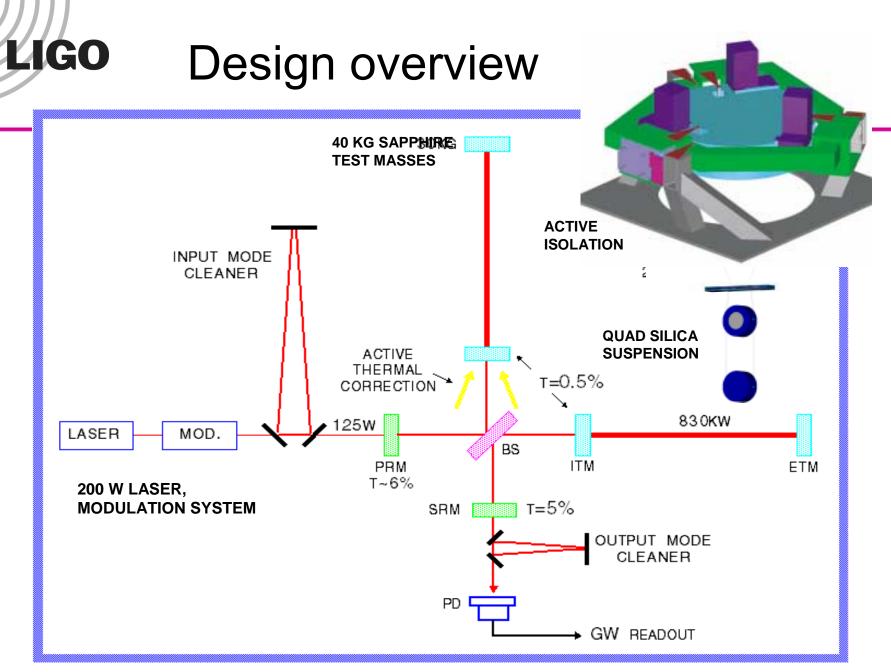

- » Seismic noise: Newtonian background suppression
- » Thermal noise: cooling of test masses
- » Quantum noise: quantum non-demolition

Astrophysical Reach

(Kip Thorne)

- Neutron Star & Black Hole Binaries
 - » inspiral
 - » merger
- Spinning NS's
 - » LMXBs
 - » known pulsars
 - » previously unknown
- NS Birth (SN, AIC)
 - » tumbling
 - » convection
- Stochastic background
 - » big bang
 - » early universe


LIGO Top level performance & parameters


Parameter	LIGO I	LIGO II		
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz		
Neutron star binary inspiral range	19 Mpc	300 Mpc		
Stochastic background sensitivity	3x10 ⁻⁶	1.5-5x10 ⁻⁹		
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling		
Laser power at interferometer input	6 W	125 W		
Test masses	Fused silica, 11 kg	Sapphire, 40 kg		
Seismic wall frequency	40 Hz	10 Hz		
Beam size	3.6/4.4 cm	6.0 cm		
Test mass Q	Few million	200 million		
Suspension fiber Q Ad	Few thousand	~30 million		

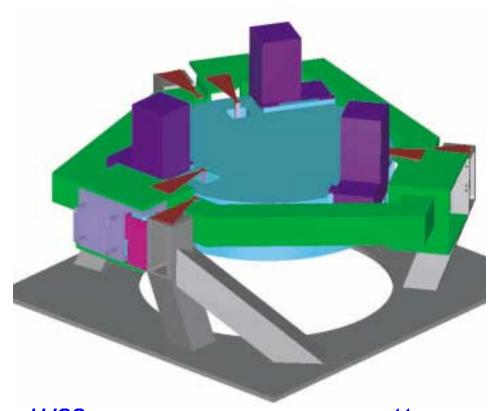
Anatomy of the projected detector performance

- Seismic 'cutoff' at 10 Hz
- Suspension thermal noise
- Internal thermal noise
- Unified quantum noise dominates at most frequencies
- 'technical' noise
 (e.g., laser frequency)
 levels held, in general, well
 below these 'fundamental'
 noises

Advanced LIGO Development Team

	Seismic	Suspension	Core Optics	Input Optics	Pre-Stab.	Aux. Optics	Ifo Sense &	Systems
Group	Isolation (SEI)	(SUS)	(COC)	(IO)	Laser (PSL)	(AOS)	Control (ISC)	Engineering
CIT	requirements	requirements; Fiber & bonding research; final design; TNI noise measure	requirements; leads design; coordinates materials develop.; polishing; inhomogeneity compensation; metrology	requirements; intensity stabilization feedback to PSL	requirements; engin support & epics integration; performance eval.	requirements; photon actuation;	requirements; electronics; system identification; 40m experiment/controls testbed	requirements; standards; extend E2E simulation; system trade studies; optical layout; FFT studies
MIT	requirements; LASTI prototype testing	requirements; measure coating effect on Q; LASTI prototype testing	requirements	requirements; integrated IO/PSL system test	requirements; LASTI prototype & IO/PSL integrated sys test	requirements; active thermal compensation	requirements; system trade studies; bench top DC read-out exp.; PD testing; ISC design lead	requirements; define noise budget, define shared signal port power allocation, etc.
LLO	engineering support							
LHO								
Stanford/HP					INICATION IONION		Melody code	
ACIGA				high power system testing	stable/unstable resonator	cavity test of active thermal compensation		
GEO/ Glasgow		welding; coating effect on mech Q; local control studies; triple performance in GEO-600; prelim design lead					10m signal recycling exp.; lock acq. & sensing matrix guidance	
GEO/ Hannover					Rod pumped system; leads PSL system design			
IAP			in-situ figure metrology	development				
PS								Bench code
Iowa		coating mech modeling						
LSU	MIMO control; SEI design lead	transient (excess) noise measure; mode coupling study & diagnostics						
MSU		chem & flame polishing effect on Q; surface charge measure						
Stanford	hydraulic pre-isolation; ETF controls testbed	welding, bonding & coating effect on mech Q; bonding strength	low absorption sapphire development		MOPA system with LIGO 20W MO		back-illuminated InGaAs detectors	
Southern U			trace element identification; absorption					
SMA/Lyon			coatings					
Syracuse		direct loss measure; effect of polishing, coating, bonding						
UFL				component tests				

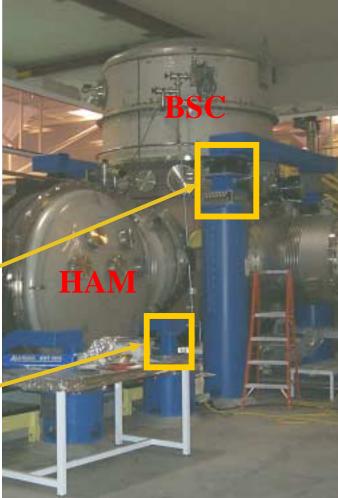
LIGO Interferometer Sensing & Control


- Signal and power recycling
- Considering DC (fringe offset) readout
- GEO 10m "proof of concept" experiment:
 - » Preparation proceeding well
 - » Results for 40m Program in early 2003 (lock acquisition experience, sensing matrix selection, etc.)

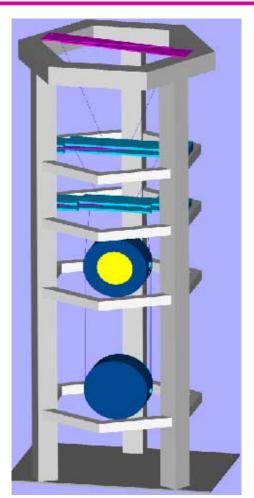
- 40m Lab for Precision Controls Testing:
 - » Infrastructure has been completed (i.e. PSL, vacuum controls & envelope, Data Acquisition system, etc.)
 - » Begun procurement of CDS and ISC equipment
 - » Working on the installation of the 12m input MC optics and suspensions, and suspension controllers to be completed by 3Q02

Seismic Isolation

- Choice of 10 Hz for 'seismic wall'; makes seismic noise irrelevant to scientific performance of system
- Achieved via high-gain servo techniques, passive multiple-pendulum isolation
- Isolation design has 3 stages:
 - » External pre-isolator: reduces RMS, 0.1 → 10 Hz
 - » Two in-vacuum 6 DOF stages,~5 Hz natural resonant frequency,~50 Hz unity gain
 - » Hierarchy of sensors (position, Streckeisen seismometers, L4-C geophones)
- LSU/Stanford science lead
- Recent progress on reducing tilt-horizontal coupling
- Second-generation prototype in assembly and test at Stanford



Seismic Isolation: Pre-Isolator

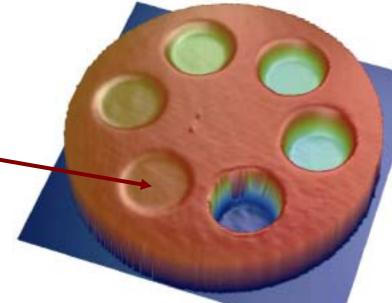

- External pre-isolator development has been accelerated for possible deployment in initial LIGO to address excess noise at LLO
 - » Feedback and feed-forward to reduce RMS
 - » Hydraulic, electro-magnetic variants
- Prototype to be tested in LASTI mid-2002
- Initial LIGO passive SEI stack built in the LASTI BSC and HAM
- Plan to install pre-isolator at LLO 1Q/2003

Suspensions

- Strong GEO/Glasgow contribution in \$ and sense
- Quadruple suspension (seismic filtering)
 - » Fused quartz suspensions (low thermal noise)
- Suspension fibers in development
 - » Development of ribbons at Glasgow
 - » Modeling of variable-diameter circular fibers at Caltech allows separate tailoring of bending stiffness (top and bottom) vs. stretch frequency
 - » Have chosen vertical 'bounce' frequency 12 Hz
 - » Can observe below (to Newtonian limit)
 - » Investigating 12 Hz line removal techniques to observe very close to bounce frequency
- Attachment of fibers to sapphire test masses
 - » Hydroxy-catalysis bonding of dissimilar materials
 - » Silica-sapphire tested, looks workable
 - » Detailed measurements of bond mechanical loss underway

LASTI Laboratory

- LIGO-standard vacuum system, 16-m 'L'
- Enables full-scale tests of Seismic Isolation and Test Mass Suspension
 - » Allows system testing, interfaces, installation practice.
 - » Characterization of non-stationary noise, thermal noise.
- Pre-stabilized laser in commissioning,
 1m in-vacuum test cavity
 - » Pursuing wider-bandwidth 'fast' loop configuration
 - » Will also be used for Adv LIGO intensity stabilization work
- Pre-isolator work for initial LIGO has taken upper hand
 - » Initial LIGO isolation systems installed
 - » Parts arriving in great quantitiy
- Advanced LIGO seismic isolation to arrive in 2003, suspensions to follow


Sapphire Core Optics

- Developing information for Sapphire/Fused silica choice
 - » Planned for Nov '02
- Mechanical Q under characterization
 - » Some pieces meet requirements (2e8 Q; Moscow, Glasgow); want a greater number of relevant measurements, in planning
- Thermoelastic damping parameters
 - » Measured room temperature values of thermal expansion and conductivity by 4 methods with agreement
 - Spinoff from thermal compensation R&D
- Optical Homogeneity
 - » Measurements along 'a' crystal axis are getting close to acceptable for Adv LIGO (13 nm RMS over 80mm path)
- Working with vendors to generate suitable substrates
 - » Several 15" boules now fabricated (Crystal Systems)

Sapphire Core Optics

- Effort to reduce bulk absorption (Stanford, Southern University, CS, SIOM, Caltech)
- LIGO requirement is <10 ppm/cm (complements compensation requirement)
- Annealing efforts are encouraging
 - » Stanford is pursuing heat treatments with forming gas using cleaner alumina tube ovens; with this process they saw reductions from 45ppm/cm down to 20ppm/cm
 - » Higher temperature furnace commissioned at Stanford
- Demonstration of super polish of sapphire by CSIRO (150mm diameter, m-axis)
 - » Effectively met requirements
- Optical Homogeneity compensation
 - » Ion beam etching, by CSIRO
 - » 10 nm deep, 10 mm dia, 90 sec ____
 - » Microroughness improved by process!
 - » Also pursuing 'pencil eraser' approach with Goodrich, good results, capable of handling full-size optics

Advanced LIGO

Coatings

- Mechanical losses of optical coatings leading to high thermal noise
 - » Masks sapphire advantage; loss φ~4e-4
 - » SMA/Lyon (France) has performed a series of research coating runs to understand mechanical loss
 - » multi-layer coating interfaces are not significant sources of loss
 - » most significant source of loss is probably within the Ta₂O₅ (high index) coating material; investigating alternatives
 - » Nb2O5/Al2O3, Al2O3/SiO2 are under study (probably ok optically)
- Optical absorption in coating leads to heating & deformation in substrate, surface
 - » Can trade against amount, complexity of thermal compensation; initial experimental verification complete
 - » MLD (Oregon) pursuing a series of research coating runs targeting optical losses
 - » Sub-ppm losses (~0.5 ppm) observed in coatings from both MLD and from SMA Lyon – meets requirement (smaller ok too!)

Light source: Laser, Mode Cleaner

- Input Optics (Univ. of Florida)
 - » Modulator with RTA shows no evidence of thermal lensing at 50W
 - » RTA-based EOMs are currently being fabricated
 - » Demonstrated 45 dB attenuation and 98% TEM00 mode recovery with a thermally compensated Faraday Isolator design (-dn/dT materials)
- Pre-Stabilized Laser (PSL)
 - » Coordinated by Univ. of Hannover/LZH, will lead subsystem
 - » Three groups pursuing alternate design approaches to a 100W demonstration
 - Master Oscillator Power Amplifier (MOPA) [Stanford]
 - Stable-unstable slab oscillator [Adelaide]
 - Rod systems [Hannover]
 - » Concept down-select Aug 2002 not there yet with any technology

LIGO High Power Testing: Gingin Facility

ACIGA high power test facility at Gingin

- » Test high power components (isolators, modulators, scaled thermal compensation system, etc.) in a systems test
- » Explore high power effects on control length, alignment impulse upon locking
- » Investigate the cold start optical coupling problem (e.g, pre-heat?)
- » Compare experimental results with simulation (Melody, E2E)

Status

- » LIGO Lab delivering two characterized sapphire test masses, probably suspensions, and a prototype thermal compensation system
- » The facility and a test plan are being refined, some flux due to scope changes, availability of sapphire

Summary of technical status

- A great deal of momentum and real progress in every subsystem
- No fundamental surprises as we move forward; concept and realization remain intact with adiabatic changes

…now, when and how to do turn this into instruments?