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Is it important to build a LF-GWID ?
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Is it important to build a LF-GWID ?
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Reasons for a Low Frequency
Gravitational Wave Interferometic Detector

• Also some technical reasons:

As the mirror thermal floor is pushed low the canyon
between 

• radiation pressure noise and 
• shot noise walls 

becomes narrower
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Technical reason Narrowing canyons
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Shifting the canyons

To efficiently 
cover a large 
frequency span 
it is necessary
to build 
dedicated 
Interferometers
each optimized 
at various 
frequency ranges
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Reasons for a Low Frequency
Gravitational Wave Interferometic Detector

• Need to implement twin interferometers in the same 
vacuum enclosure

• Complementary in frequency range
• Separately cover the high and low frequency range

• at LF not having power limitations, fused silica is 
probably better than sapphire



8

Comparing the canyon bottoms
• DifferentTN

slope of
• Sapphire

Best at high 
frequency

Also needed to 
dissipate 
high power

• and 
• Fused Silica

Best at low 
frequency
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Annealing 
seems
to expose 
the plunge
to zero 
dissipation 
at zero 
frequency

Kenji Numata
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Surface and
Coating losses?

Let me cheat for a moment
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Ingredients for LF-GWID

• 1 Seismic Attenuation OK
• 2 Control schemes OK

• 3 Mirror suspensions (today’s focus)
• 4 Mirrors

– A Substrates probably OK
– B Coatings remains to be seen

• 5 Optical layout low power, will find solutions
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Next  prioriry towards a LF-GWID

• The stumbling block for a 
• Low Frequency Gravitational Wave 

Interferometer is 

• Suspension Thermal Noise
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This is the 1st enemy
This is the 2nd enemy
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3 Suspension thermal noise
• Main Argument of presentation

– Glassy metal flex joints 

– An alternative to fused silica at low 
frequency?
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Suspension thermal noise

• Cryogenics, a tough but in the long term almost 
sure bet

• If we can reach the bottom of the valley at room 
temperature, why bother?

• Is there an suspension alternative 
at room temperature and low frequency?

• Glassy metal flex joints 

– Analyze metal vs. fused silica
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Triple Pendulum: Thermal Noise

Factor of three improvement 
over steel wires
reported for GEO 
by Norna Robertson.
Intrinsic limitations

Factor of three improvement 
over steel wires
reported for GEO 
by Norna Robertson.
Progress limited by 
intrinsic limitations
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Alternative Suspension Solutions
metallic flex joints

• Metallic Flex joints have been evaluated in the 
past for mirror suspensions (D. Blair et al.)

• Metals start disadvantaged with respect with 
glasses because of lower intrinsic Q-factors 
(<10,000 for metals).

• Flex joint have an edge because they allow 
fabrication of ribbons with large aspect ratios => 
large pendulum dilution factors

• Metals are stronger



18

Advantages of
Glassy Metals

• Like metals easy to shape and braze: allow
advanced engineering and mechanical geometries.

• Naturally produced in thin films or ribbons.
• Not fragile (no water problem, thin ribbons)
•
•

•
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SiO2 +H2O scissor effect

• SiO2 + H2O = 2 SiO-OH 
• scissor effect
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An additional advantage
Glassy Metals

• Like metals easy to shape and braze: allow
advanced engineering and mechanical 
geometries.

• Naturally produced in thin films or ribbons.
• Not fragile (no water problem)
• Allow loads of 4, 5 or even 6 GPa!!!
• (Best steel limit at 1.8 Gpa, typical fused silica 0.7 GPa)

• Very large elasticity limit (2%)
• Some metallic glasses have low internal Q-factors 

but refractory metal glasses have large Q-factors
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A pitfall
Hydrogen flipping losses

= Metal 
Atom
= Hydrogen 
location 

Hydrogen atom flip-flop 
with changing stresses

Also Q-factor is a steep 
function of ratio of 
melting/room temperature
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Which Glassy Metals are promising

• Glassy metals can be manufactured
– Starting from many metals,  recipe:
– Mix two close relative metals 
– Molybdenum + Ruthenium
– Add Boron to frustrate the formation of 

crystalline structures
– Cool rapidly
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Which Glassy Metals are promising

• There is no qualitative difference between
• Quartz /  Fused Silica and
• Crystalline metals/ Glassy metals

• Crystallization time 
– Hours for   Fused Silica
– Seconds  for   Glassy Metals
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Which Glassy Metals are promising

• Molybdenum Ruthenium Boron

do not absorb hydrogen
and have

very high melting points
(similar or higher than Fused Silica)
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Melting points
Element

Melting Point
( 0C)

Mo 2617

Ru 2310

B 2300

W 3410

Re 1966

Si 1410

Glass Melting Point
( 0C)

MoRuB 1400-1450

WReSiB 1600-1700
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Which Glassy Metals are promising

• In metallic glasses the Mo-Ru bond play 
same role as the Si-O bond in Fused Silica, 
both in determining the 

• melting temperature the 
• dissipation processes and the
• damage processes
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Why Glassy Metals are promising

• Selected Glassy metals have high Q-factors

• But intrinsic Q factor is less important
because of the much more advantageous
possible geometries
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Estimated MoRuB glass properties

• Mo49Ru33B18 in atomic percent.
• density, 9.5 g/cc
• heat conductivity,  10 Watts/m-K
• heat capacitance, 30 J/mole-K
• linear thermal expansion coeff.,  5-6 x 10-6 (K-1)
• elastic modulus, 250 GPa
• Poisson modulus,  0.36-0.38
• breaking point 5 GPa

(not fragile, loadable to > 
4GPa)

• - These numbers should be accurate to +/- ~20%
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Thermal noise of MoRuB flex joints

Glassy metal Q=104,  Fused SiO2 dumb bell shaped fiber Q=8.4*108,
10*3000 = 30,000 µm2, 357  µm diameter, 100,000 µm2,
60 Kg mirror, 40 Kg mirror
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What’s the development program

• Make several samples of different compositions
• Measure physical properties 

– Yield point,
– Elastic constant
– Poisson ratio
– Thermal capacity
– Thermal conductivity
– Thermal expansion coefficient . . . . . . .

• Measure reed (diving board) Q-factors of 
samples
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• Demonstrate feasibility of fabrication of 
suspension structures

• Demonstrate feasibility of attachments to 
mirrors without significant loss of 

mirror Q-factor

• Test suspension Q-factors (>108) with 
macroscopic mirrors

What else to do
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What is being done?

• Make several samples of different compositions

• Samples are made in Caltech Metallurgy 
department (splat cooling)
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What is being done?R.F. levitation and 
melting coil

Pulsed Copper anvils
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What does splat cooling produce?

• The end product is a disk
– 50 µm thick, 
– 15 mm in diameter

• The surface copies the (electropolished) 
anvil’s surface to optical accuracy

• Only 3*6 mm platelets are required
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What is being done?

• Measure physical properties 
– Yield point,
– Elastic constant
– Poisson ratio
– Hysteresis 
– Thermal capacity
– Thermal conductivity
– diving board Q-factors
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What is being done?

Vit_1 Cryostat Measurement (08/04/2002)
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Measure reed Q-factors

• Reed 
mounted on an 

isolation stack
to isolate it from 
cryostat 
dissipation.

• Optical lever
readout 
of  ringdown

•Electrostatic 
excitation
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Measure reed Q-factors

Empty Cryo puck case,

periscope housing

Test reed  on
Q-factor probe on puck



45

What to be done next?

• Need to Demonstrate feasibility

• of employing Glassy Metals to fabricate 

• mirror suspensions with record Q-factor
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What to be done next?

• Ingredients
– Suspension rigid structure carved by EDM
– Glassy metal Flex joints brazed to the rigid 

structure
– Flex joint structure brazed to a wire
– Hook bonded to a ledge in the mirror
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Fabricate the Flex Joint

• EDM carve half of the Flex Joint
structure out of a single piece of 
material

• The Flex Joint structure will be 
finished at the very end of the 
process by cutting the dashed lines

• All the surfaces on which to braze 
the flex joint are aligned by birth!

16 mm
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Fabricating  the 
Flex Joint

• The Flex Joint
Is positioned by a 

”Cavalier”, 
with a slot to house the 
thin part of flex joint

thinning it from 50 to 10 µm
by through-mask 
electrochemical
micromachining (IBM patent)

50 µm   10 µm   50 µm
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Fabricate the Flex Joint

• The flex joint structure, is 
now provided with the 
glassy metal
suspension wire

• The thin flex joints, are still 
imprisoned by the cavaliers
both are brazed together by 
the baking process

• After brazing the ears of the 
cavaliers are EDM chopped 
off before separating the 
structure from its mother 
plate
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• The finished 
flex joint is 
finally 
ready for 
attachment 
to the 
mirror’s 
ledges

Fabricate the Flex Joint
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Fabricate the Flex Joint

• The mating surfaces of 
the flex joint and  of the 
mirror’s ledge are 
indium coated to 
provide an 

excess-noise-free 
connection
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Why using ledges

• The use of ledges and low temperature 
brazing eliminated all shear efforts

• Can be assembled and disassembled by 
simply warming up the indium

• Need to Demonstrate feasibility of 
attachments to mirrors without significant 
loss of mirror Q-factor
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What is being done?

500 Kg mass
Supporting 
10 Kg mirror

Observe pitch 
mode


