LIGO

Low Freguency Gravitational
\Wave |nterferometric Detectors

Riccardo DeSalvo

GWADW 2002 Isolad’ Elba
24th of May 2002

LIGO-G020258-00-D



LIGO|s |t Important to builld aLF-GWID ?
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LIGO

|s it important to build aLF-GWID ?

Signal to Noiseratio at 10 kpc
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LIGOL Reasons for aL.ow Frequency
ravitational Wave Interferometic Detector

e Also some technical reasons:

Asthe mirror thermal floor is pushed low the canyon
between

e radiation pressure noise and
e shot noisewalls
becomes narrower
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LIGOL Reasons for aL.ow Frequency
ravitational Wave Interferometic Detector

* Need to iImplement twin interferometers in the same
vacuum enclosure

o Complementary in frequency range
o Separately cover the high and low freguency range

o a LF not having power limitations, fused silicais
probably better than sapphire



LIGo  Comparing the canyon bottoms
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LIGO

Let me Cheat for amoment

Surface and
Coating losses?
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“LIGO

Ingredientsfor LF-GWID

e 1 Seismic Attenuation OK
e 2 Control schemes OK
« 3 Mirror suspensions (today’s focus)
e 4 Mirrors
- A Substrates probably OK
- B Coatings remainsto be seen

5 Optical layout low power, will find solutions
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LIGO

Next prioriry towardsalLF-GWID

e The stumbling block for a

* Low Frequency Gravitational \Wave
Interferometer Is

e Suspension Thermal Noise
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‘LIGO
' 3 Suspension thermal noise

 Main Argument of presentation

— Glassy metal flex joints

— An dternativeto fused silica at low
frequency?
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“LGo
" Suspension thermal noise

e Cryogenics, atough but in the long term almost
sure bet

 |f we can reach the bottom of the valley at room
temperature, why bother?

e |sthere an suspension alternative
al room temperature and low frequency?

o Glassy metal flex joints

— Analyze metal vs. fused silica
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'I'Irﬁ:)q Pendulum: Thermal Noise
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% LIGO Alternative Suspension Solutions
metallic flex joints

 Metallic Flex joints have been evaluated in the
past for mirror suspensions (D. Blair et &l.)

o Metals start disadvantaged with respect with
glasses because of lower intrinsic Q-factors
(<10,000 for metals).

e Flex joint have an edge because they allow
fabrication of ribbons with large aspect ratios =>
|large pendulum dilution factors

e Metals are stronger
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LiGO Advantages of
Glassy Metals

Like metals easy to shape and braze: allow
advanced engineering and mechanical geometries.

Naturally produced in thin films or ribbons.
Not fragile (no water problem, thin ribbons)
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LiGO An additional advantage
Glassy Metals

» Like metals easy to shape and braze: allow
advanced engineering and mechanical
geometries.

« Naturally produced in thin films or ribbons.

 Not fragile (no water problem)

 Allow loadsof 4,5 or even 6 GPal!l
 (Best sted limit at 1.8 Gpa, typical fused silica 0.7 GPa)
 Very large elasticity limit (2%)

« Some metallic glasses have low internal Q-factors
but refractory metal glasses have large Q-factors
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LIGO A pitfall
Hydrogen flipping losses

QO = Metal

Atom

X = Hydrogen
location

Also Q-factor is a steep

Hydrogen atom flip-flop function of ratio of

with changing stresses melting/room temperature
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LIGO
Which Glassy Metals are promising

e Glassy metals can be manufactured
— Starting from many metals, recipe:
— Mix two closerelative metals
— Molybdenum + Ruthenium

— Add Boron to frustrate the formation of
crystalline structures

— Cool rapidly
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LIGO
Which Glassy Metals are promising

There is no qualitative difference between
e Quartz | Fused Silicaand
e Crydstalline metals/ Glassy metals

o Crystallization time
— Hours  for Fused Silica
— Seconds for Glassy Metals
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LIGO
Which Glassy Metals are promising

 Molybdenum Ruthenium Boron

do not absorb hydrogen
and have

very high melting points
(similar or higher than Fused Silica)
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LIGO

Melting points

Melting Point
Element
(C) _ _
Mo 2617 Glass I\/Ieltl(r:g)Pomt
Ru 2310 MoRuB 1400-1450
B 2300 WReS B 1600-1700
W 3410
Re 1966
Si 1410
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LIGO
Which Glassy Metals are promising

 In metallic glasses the Mo-Ru bond play
same role asthe Si-O bond in Fused Silica,
both in determining the

e melting temperaturethe
e dissipation processes and the
e damage processes
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LIGO

Why Glassy Metals are promising

o Selected Glassy metals have high Q-factors

e But intrinsic Q factor Is|ess important
because of the much more advantageous
possible geometries
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LIGO
Estimated MoRuUB glass properties

 M049Ru33B18 in atomic percent.

o density, 9.5 g/cc
* heal conductivity, 10 Wattsm-K
* heal capacitance, 30 Jmole-K
 |inear therma expansion coeff., 5-6 x 10° (K1)
 ¢lastic modulus, 250 GPa
 Poisson modulus, 0.36-0.38
 breaking point 5 GPa
(not fragile, loadable to >
4GPa)

28

e - These numbers should be accurate to +/- ~20%



LIGO

Thermal noise of MoRuB flex joints
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Glassy metd Q=10, Fused SiO, dumb bell shaped fiber Q=8.4* 108,
103000 = 30,000 m?, 357 mm diameter, 100,000 N2, o
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LIGO

What' s the development program

o Make several samples of different compositions
 Measure physical properties

— Yield point,

— Elastic constant

— Poisson ratio

— Thermal capacity

— Thermal conductivity

— Thermal expansion coefficient . ......

e Measurereed (diving board) O-factor s of
samples




LIGO

What else to do

 Demonstrate feasibility of fabrication of
suspension structures

 Demonstrate feasibility of attachmentsto
mirrors without significant |oss of
mirror Q-factor

e Test suspension Q-factors (>10%) with
Macroscopic mirrors
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LIGO

What 1s being done?

e Make several samples of different compositions

o Samples are made in Caltech Metallurgy
department (splat cooling)
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MoRuB X-ray Pattern
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LIGO
What does splat cooling produce?

e The end product isadisk

— 50 mm thick,
— 15 mm in diameter

e The surface copies the (el ectropolished)
anvil’s surface to optical accuracy

e Only 3*6 mm platelets are required



LIGO

What 1s being done?

* Measure physical properties
— Yield point,
— Elastic constant
— Poisson ratio
— Hysteresis

— Thermal capacity
— Thermal conductivity

— diving board Q-factors
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What 1s being done?

Vit_1 Cryostat Measurement (08/04/2002)
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LIGO

Measure reed Q-factors

eElectrostatic
excitation

to 1solate 1t from

cryostat : b
dissipation. H i f%
readout 3_'5 if : ,—J
of ringdown — =

gl = r



LIGO

Measure reed Q-factors

Empty Cryo puck case,
periscope housing

Test reed on
Q-factor probe on



LIGO

What to be done next?

* Need to Demonstrate feasibility

« of employing Glassy Metals to fabricate

e mirror suspensions with record Q-factor



What to be done next?

 Ingredients
— Suspension rigid structure carved by EDM

— Glassy metal Flex joints brazed to therigid
structure

— Flex joint structure brazed to awire
— Hook bonded to aledge in the mirror



LIGO

Fabricate the Flex Joint

EDM carve half of the Flex Joint

t | L structure out of a single piece of
1 | material
I The Flex Joint structure will be
— finished at the very end of the
16k ; process by cutting the dashed lines
— All the surfaces on which to braze

the flex joint are aligned by birth!
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LIGO Fabricating the

e TheFlex Joint

Flex Joint |s positioned by a
"Cavalier’”,
thinning it from 50 to 10 nm with a dot to house the
by through-mask thin part of flex joint
el ectrochemical

micromachining (IBM patent)
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LIGO

Fabricate the Flex Joint

e Theflex joint structure, Is

now provided with the
| \glassy metal

suspension wire

e Thethinflex joints, are still
Imprisoned by the cavaliers
both are brazed together by
the baking process

» After brazing the ears of the
cavaliers are EDM chopped
off before separating the
structure from its mother

plate 49
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Fabricate the Flex Joint

The finished
flex joint Is
finally

ready for
attachment
to the
Mmirror’s
ledges




LIGO
Fabricate the Flex Joint

; » The mating surfaces of
ﬁﬁ the flex joint and of the
_______________ mirror'sledge are
f/\\ Indium coated to
\ provide an

vV excess-noise-free

connection

51



‘LIGO

Why using ledges

e Theuse of ledges and low temperature
brazing eliminated all shear efforts

e Can be assembled and disassembled by
simply warming up the indium

* Need to Demonstrate feasibility of
altachments to mirrors without significant
lossof mirror Q-factor
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LIGO

What 1s being done?
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