

Bicoherence Monitor

Steve Penn, Syracuse University LSC Meeting - March 2002

LIGO-G020118-00-Z

Synopsis

Introduction to Higher Order Statistics

- » 1D: Correlation, Coherence, Power Spectra
- » 2D: Bicorrelation, Bicoherence, Bispectrum
- » 3D...
- Bispectrum diagnostic
- Gaussianity Test
- Linearity Test

What are Higher Order Statistics?

• 1D Statistics:

» Correlation:
$$C_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) d\tau \iff X(f) Y^*(f) = S_{xy}(f)$$

» Power Spectral Density: $C_{2x}(t) \iff X(f) X^*(f) = S_{2x}(f)$

» Coherence:
$$C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{2x}(f)S_{2y}(f)}}$$

- Tells us power and phase coherence at a given frequency

LSC • March 2002 Syracuse University Experimental Relativity Group

• 2D Statistics:

LIGO

» Bicumulant:

 $C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) z(t'+\tau) d\tau \quad \Leftrightarrow \quad X(f_1) Y(f_2) Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$

» Bispectral Density:

$$C_{3x}(t) \iff X(f_1)X(f_2)X^*(f_1+f_2) = S_{3x}(f_1,f_2)$$

» Bicoherence:

$$\mathsf{C}_{xyz}(f) = \frac{S_{xyz}(f_1, f_2)}{\sqrt{S_{2x}(f_1) S_{2y}(f_2) S_{2z}(f_1, f_2)}}$$

- Tells us power and phase coherence at a coupled frequency

LSC • March 2002 Syracuse University Experimental Relativity Group

Zero-lag Cumulants

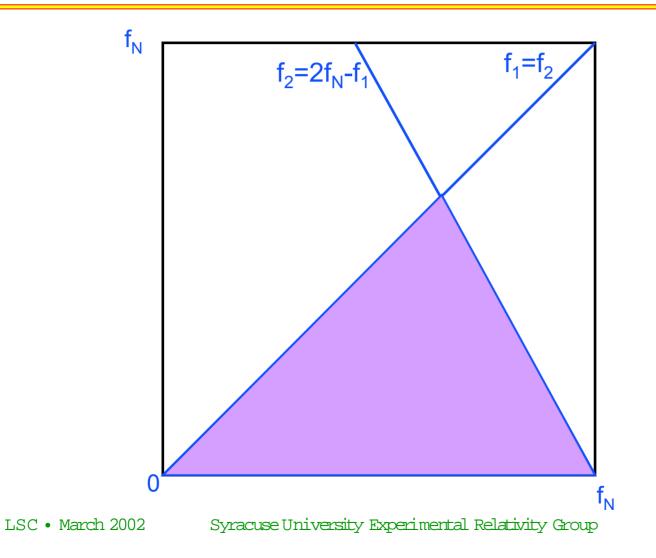
Mean	Variance	Skewness	Kurtosis
$C_{x}(0)$	$C_{2x}(0)$	$C_{3x}(0)$	$C_{4x}(0)$
		0 if Symmetric	0 if Gaussian

Useful statictical values, but...

Skewness = 0 does not prove symmetry Kurtosis = 0 does not prove Gaussianity Variations in skew and kurtosis not well quantified.

Why Higher Order Statistics?

• For a Gaussian process: $C_{nx}(t) = 0$, for n > 2


• For independent processes:

$$z(t) = x(t) + y(t), \quad C_{nz}(t) = C_{nx}(t) + C_{ny}(t) \xrightarrow{n>2} C_{ny}(t)$$

- Allows for separation of Gaussian process for n>2
 - » Visual check of frequency coupling and phase noise
 - » Statistical test for the probability of gaussianity and linearity
 - » Iterative process to reconstruct nongaussian signal from the higher order cumulants

Bispectrum Unique Area

Monitor Features

• Plots cross-bicoherence and cross-bispectrum (optional).

- » Operates on 1-3 channels
- » Automatically decimates to the lowest channel rate.
- » Further decimation (by factor 2^n) user-specified (sets f_{max})
- $^{\prime}$ » Time span (by 2ⁿ seconds) user-specified (sets Δf)
 - » User-specified Bispectrum method

Indirect Direct $C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) z(t'+\tau) d\tau \iff X(f_1) Y(f_2) Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$

- » Windowing: Optimized Rao-Gabr windowing
- > Outputs EPS files of the plots
 - » New, stable Help facility

Improvements since last LSC

- USERS! Thanks to Nelson Christiansen and Dennis Ugolini!
- User-selectable features listed on previous slide

• **SPEED!** Major code rewrite for speed.

- » Old version: 2k, unwindowed channels were almost real-time.
- » New version: 16k, windowed channels ARE real-time!
- » ==> speed improvement factor of a few hundred!
- GUI in progress but not quite finished yet. Sorry.
- Gaussianity Test: same as above.

How to use XBic

Example:

- » cd /home/spenn
- » ./XBic --help
- » ./XBic L0:IOO-PSL1 MIC L2:LSC-AS Q -direct -MaxFrame 15
- » ./XBic L2:LSC-AS_Q -direct -MaxFrame 15