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Max Planck Institute for Astrophysics, Garching

Gravitational Waves from Core Collapse Supernovæ

Problem with observing a core collapse supernova:

We only see optical light emission (light curve) of the explosion
(hours after collapse – envelope optically thick).

But: Gravitational waves are a direct means of observation of stellar core collapse.

Some of the new gravitational wave detectors are already taking data.

Challenge: Such a burst signal is very complex!
⇒ We need realistic prediction of the signal from relativistic numerical simulations!

Our contribution:

The first relativistic simulation of rotational core collapse to a neutron star.
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Physical Model

Physical model of a core collapse supernova:

• Massive star develops an iron core (Mcore ≈ 1.5M�), which then collapses (Tcollapse ≈ 100 ms).

• At supernuclear density, neutron star forms (EoS of matter stiffens ⇒ bounce).

• Shock wave propagates through stellar envelope and disrupts rest of the star (visible explosion).

During the various evolution stages, core collapse involves many aspects of physics.

⇒ Numerical simulations are very complicated, many approximations necessary.

And not even all the physics is known: Supernuclear EoS, rotation rate and profile of iron core, . . .

Measurement of the signal waveform will reveal new physics!
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Assumptions about the Model

To reduce the complexity of the problem, we assume

• axisymmetry and equatorial symmetry,

• rotating γ = 4/3 polytropes in equilibrium as initial models,

with central density ρc ini = 1010 gm cm−3,

radius Rcore ≈ 1 500 km, and

various rotation profiles and rotation rates,

• simplified ideal fluid equation of state, P (ρ, ε) = Ppoly + Pth (neglect complicated microphysics),

• constrained system of the Einstein equations (assume conformal flatness for the three-metric).

Goals

• Extend research on Newtonian rotational core collapse by Zwerger and Müller to GR.

• Obtain more realistic waveforms as “wave templates” for interferometer data analysis.

• Have a versatile 2D GR hydro code for comparison with future simulations.
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Results
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Regular Collapse

Model A: Slow, almost uniform rotation, fast collapse (≈ 40 ms), soft supernuclear EoS.
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• Deep dive into potential, high supernuclear densities, single bounce, subsequent ring down.

• GR simulation: Higher central density and signal frequency, but lower signal amplitude.

Explanation: GW signal is determined by accelation of extended mass distribution:

AE2
20 = Q̈ ∝

d2

dt2

∫
dV ρ r2 . ← weight factor!

In relativistic gravity core is more compact. ⇒ Gravitational waves can have smaller amplitude!
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Change of Collapse Dynamics

Model B: Slow, almost uniform rotation, slow collapse (≈ 90 ms).
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• Rotation increases strongly during collapse (angular momentum conservation!).

• Newtonian: Nuclear density hardly reached, multiple centrifugal bounce with re-expansion.

• GR: Nuclear density easily reached, regular single bounce.

• Relativistic simulations show multiple bounces only for a few extreme models.

Strong qualitative difference in the collapse dynamics and thus in the signal form.
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Gravitational Wave Signals

Influence of relativistic effects on the signals: Investigate amplitude–frequency diagram.
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• Spread of the 26 models does not change much. ⇒ Signal of a galactic supernova detectable.

• On average: Amplitude −→, Frequency ↗.

If close to detection threshold: Signal could fall out of the sensitivity window!
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Rapidly Rotating Models

Model C: Fast and extremely differential rotation, rapid collapse (≈ 30 ms).

• Initial model has toroidal density shape; torus becomes more pronounced during contraction.

• Proto-neutron star is surrounded by a disc-like structure, which is accreted.

• Bar instabilities are likely to develop on dynamical timescale.

• After bounce, a strongly anisotropic shock front forms.
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Summary

These are the first gravitational wave templates obtained by
simulations of rotational supernova core collapse in general relativity.

Our simulations show:

• Central densities are significantly higher than in Newtonian simulations.

• Many previous multiple bounce models collapse to supernuclear densities in relativity.

• On average, the signal amplitude does not change, but the signal frequency increases;
we still have hTT ≈ 10−23 · 10 Mpc/R for axisymmetric supernova core collapse.

• Relativistic effects increase rotation rate; many models could develop triaxial instabilities.

• Our wave templates replace the Zwerger catalogue; we will make them publicly available.
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Validity of the Conformal Flatness Condition (CFC)

Assuming conformal flatness for the three-metric is sufficiently accurate for

• not very nonspherical matter distributions
(fulfilled very good in core collapse – compare to rotating dust disks, Schäfer and Kley), and

• if the energy of gravitational wave emission can be neglected
(no significant gravitational radiation backreaction on the dynamics – Egw <∼ 10−7Etot!).

Facts and results from accuracy tests for the CFC approximation:

• CFC makes no explicit assumptions about the time-dependence of spacetime.

• CFC metric solves the ADM constraints.

• Evolution equations for γij are only slightly violated.

• Evolution equations for Kij are violated stronger
(Kij are a particular combination of metric components – they are never used in our approach).

•We can maintain long-term stability for rotating neutron stars.

• Even for strongly deformed rotating neutron stars, CFC is a fair approximation.
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