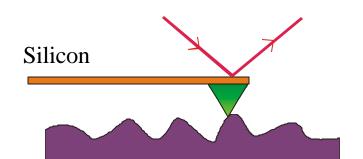
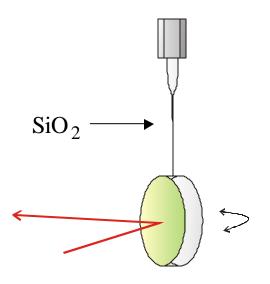
Thermal noise from lossy surfaces

Andri M. Gretarsson

Syracuse University


Typical experiments limited by mechanical thermal noise

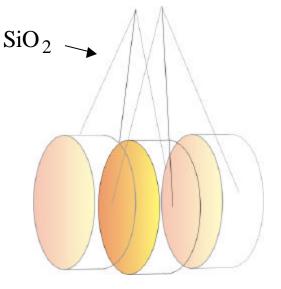

Atomic force microscope

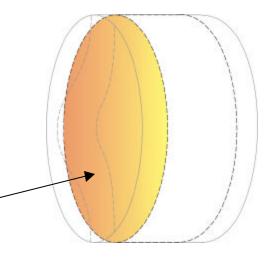
Thermal force fluctuations in armature limit position accuracy

Torsion pendulum

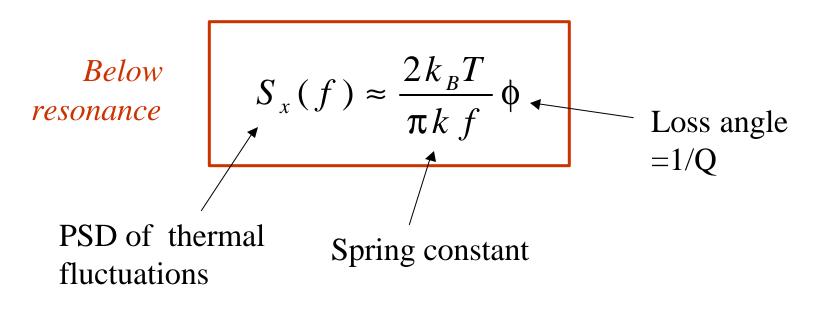
Thermal force fluctuations in fiber limit phase accuracy

Thermal noise in LIGO


 SiO_2/Ta_2O_5


Pendulum mode thermal noise

Fluctuations in the suspending flexures randomly excite the pendulum mode


Internal mode thermal noise

Fluctuations in the coating and substrate randomly excite the internal modes

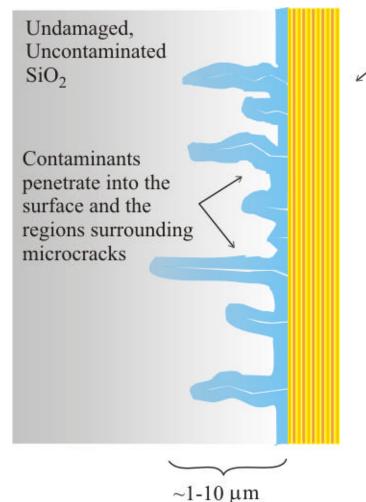
Fluctuation-Dissipation Theorem

Above resonance

$$S_x(f) \approx \frac{k_B T f_0^2}{2\pi^5 m f^5} \phi$$

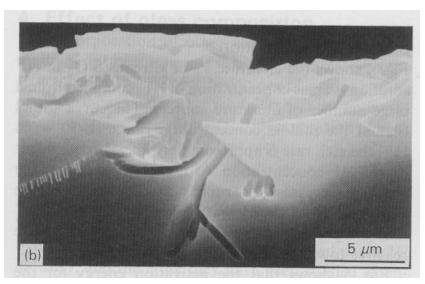
Typical bulk Q's at room temperature (10-1000 Hz)

Plastics	$10^{1} - 10^{3}$
Metals	$10^3 - 10^4$
Ordinary glass	$10^4 - 10^5$
Fused Silica	$10^{6} - 10^{8}$
Sapphire	~ 10 ⁸
Silicon	~ 10 ⁸


Surface loss

• In low-loss probes, mechanical loss from the *surfaces* often dominates.

- Sources of surface loss in SiO₂
 - Unsatisfied surface bonds attract H_2O to form SiOH groups.
 - Other chemicals are also present.
 - Polishing leaves a "gel-layer" of damage (Lunin).
 - Polishing creates microcracks (Spierings).


– Optical coatings may need to be applied to the surface. G010381-00-0

Typical polished and coated surface

Coating

Microcracks are optically closed but can be revealed with a light HF etch.

G. A. C. M. Spierings, J. Mat. Sci. 28 6261 (1993).

Quantifying surface loss

• Material loss angle is degraded near the surface

$$\phi_{\text{bulk}} \rightarrow \phi(d), \qquad d = \text{depth.}$$

• For coatings, change is sudden

 $\phi_{\text{bulk}} \rightarrow \phi_{\text{coating}}.$

- Usually however, we can't measure the depthdependence of the loss.
- Need a more practical measure of surface loss.

The surface loss α

• Lump all the "bad stuff" together

$$\alpha \equiv \int_{0}^{d} \phi(n) \, dn \qquad d = \frac{\text{surface}}{\text{depth}} << \frac{\text{sample}}{\text{thickness}}$$

$$n = \text{distance inwards from surface}$$

• For a homogenous coating of thickness d

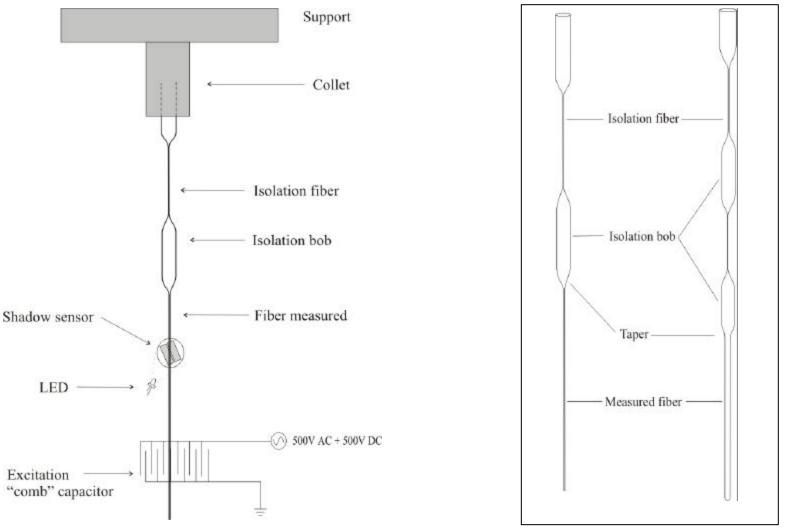
$$\alpha = \phi_{\text{coating}} d$$

So, a measurement of α is equivalent to a measurement of ϕ_{coating} .

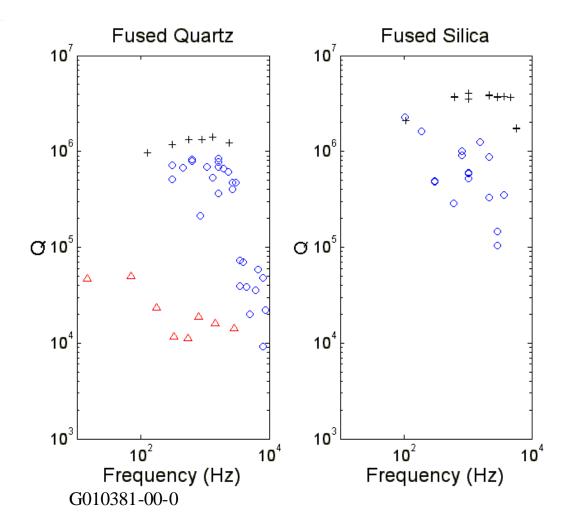
Utility of α

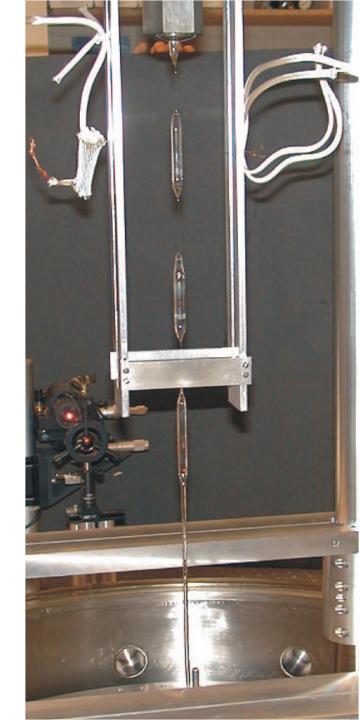
- Quantify the effects of surface-treatments in a sample-independent way.
- Compare the surface loss of different materials.
- α/φ_{bulk} is a new measure of the physical condition of a surface. (How does it correlate with other metrics?)
- Need to know the value of α for fiber surfaces and for coatings in order to calculate thermal noise in LIGO.

Measuring the surface loss α

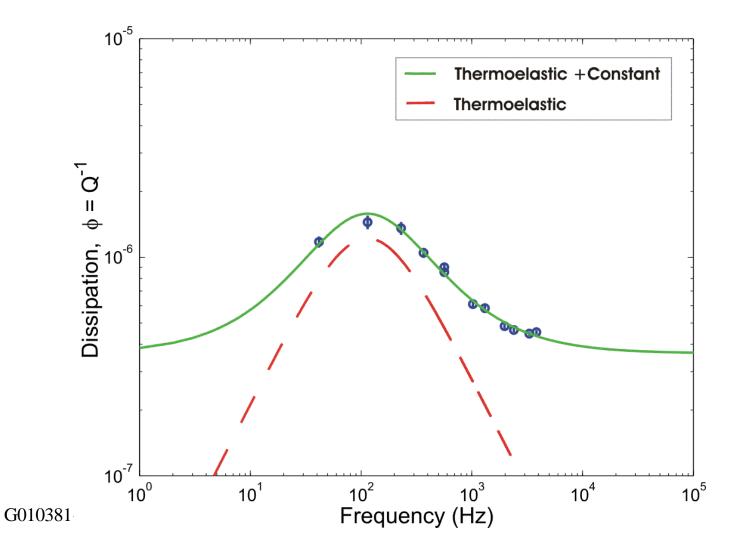

• Total measured loss is something like

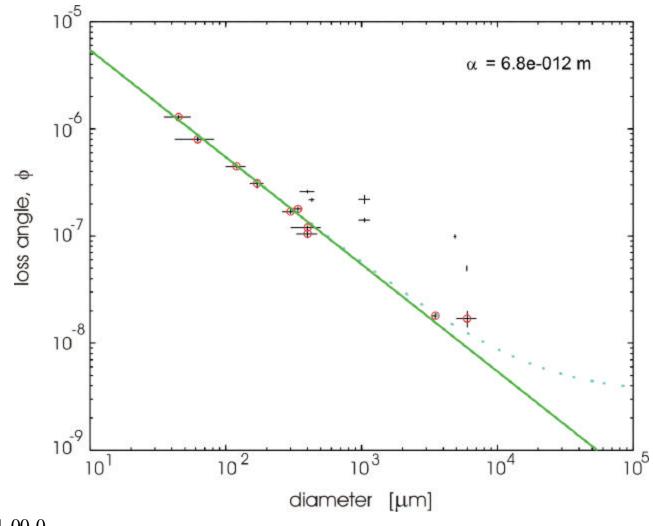
$$\phi_{\text{total}} = \frac{U_{\text{bulk}}}{U_{\text{total}}} \phi_{\text{bulk}} + \frac{U_{\text{surface}}}{U_{\text{total}}} \phi_{\text{surface}} \quad \text{Undefined}$$


• correct expression • correct expression • $\phi_{total} \approx \phi_{bulk} + \frac{\delta U}{U} \alpha$ Energy density at surface [J/m] Units [m] Elastic energy amplitude Measurement of α for flame-drawn fused silica fibers


- Measured the Q's of 16 flame drawn fibers 40 microns 6 mm in diameter.
- Excited fiber modes and measured their ringdown times.
- Tried not to touch fiber surface but otherwise no special handling.

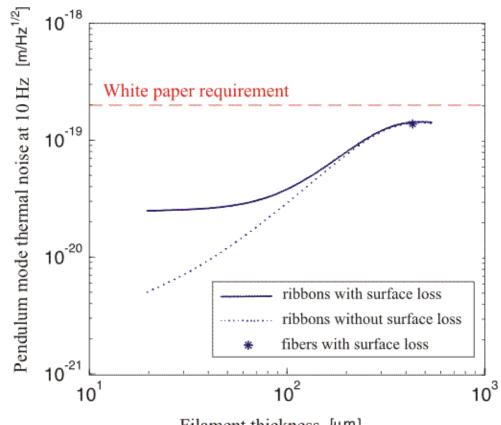
Setup


(getting rid of) Excess loss



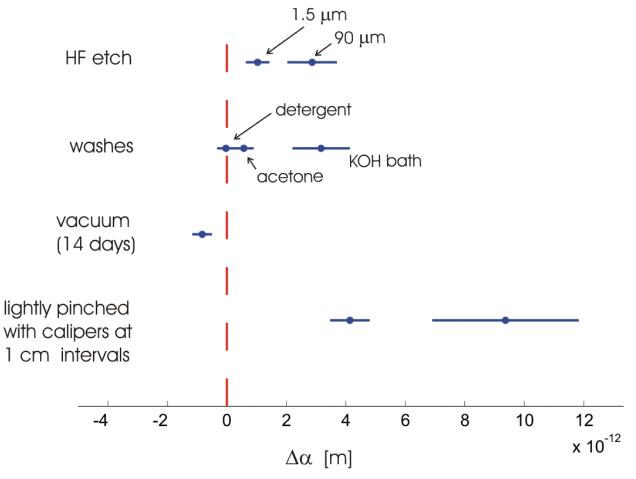
\$\$ vs. frequency

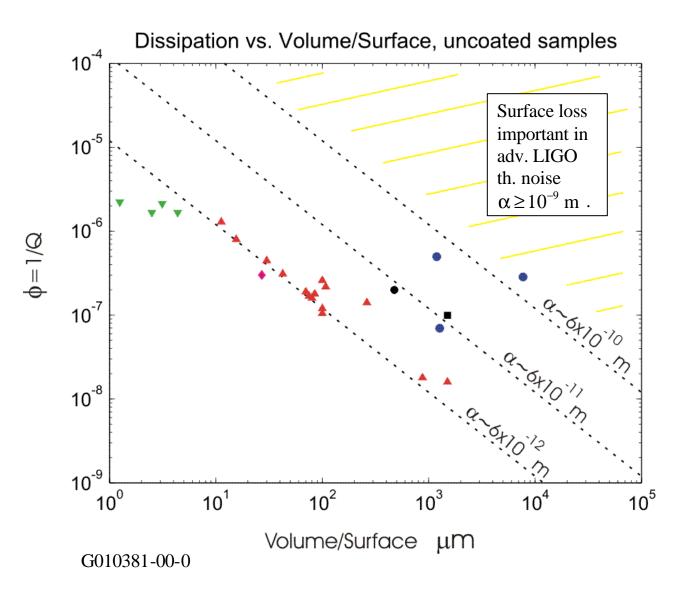
(140 µm fiber)



Loss vs. diameter

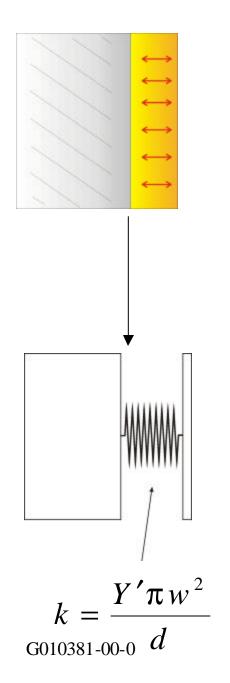
Effect on advanced LIGO thermal noise


$$S_{\text{pend}}(f) = \frac{k_B T g}{\pi^5 M L^2 f^5} \sqrt{\frac{Y}{12\sigma}} \left(d\phi_{\text{bulk}} + d\phi_{\text{th.el.}} + 6\alpha \right)$$


G010381-00-0

Filament thickness [µm]

Surface treatments



Polishing

Cut and polished surfaces are 10-100x worse than "virgin" surfaces

- Flame-drawn fibers
- RF-drawn ribbon
- Laser-drawn fibers
- Highly polished disks
- Comm. polished disks
- Comm. polished slides

Coating-induced thermal noise (baby model)

$$S_{x}(f) \approx \frac{2k_{B}T}{\pi k f} \phi_{\text{coating}} = \frac{2k_{B}T}{\pi^{2} f} \left(\frac{d \phi_{\text{coating}}}{Y' w^{2}} \right)$$
$$\Rightarrow \sqrt{S_{h}(100 \text{ Hz})} \approx 4 \times 10^{-20} \sqrt{d \phi_{\text{coating}}}$$
Need:
$$d \phi_{\text{coating}} = \alpha < 2 \times 10^{-9} \text{ m}$$

If $d = 10^{-5}$ m, need $\phi_{\text{coating}} < 2 \times 10^{-4}$ Need coating material Q > 5000.

Typical bulk Q's at room temperature (10-1000 Hz)

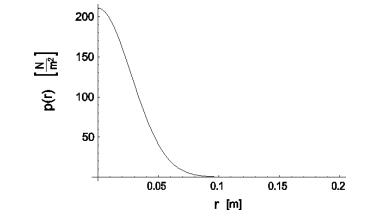
Plastics	$10^{1} - 10^{3}$	
Metals	$10^3 - 10^4$	
Ordinary glass	$10^4 - 10^5$	
Fused Silica	$10^{6} - 10^{8}$	
Sapphire	$\sim 10^8$	
Silicon	$\sim 10^8$	

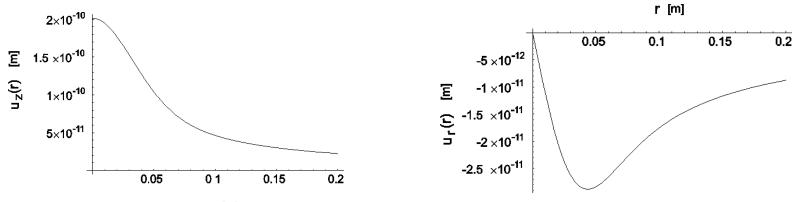
Coating-induced thermal noise (more careful model)

• Apply a cyclic Gaussian pressure distribution to the test mass and calculate the response [Levin, Bondu et al.].

$$p(r,t) = \frac{2F}{\pi w^2} \exp\left(\frac{-2r^2}{w^2}\right) \sin\left(2\pi f t\right)$$

- Add coatings [Gretarsson, Nakagawa et al.].
- Allow the loss angle of the coating to be anisotropic to reflect the layered structure.


Use the Fluctuation-Dissipation Theorem


$$\frac{Below}{resonance} \quad S_x(f) \approx \frac{2k_BT}{\pi k f} \phi$$

$$k = \frac{F^{2}}{2U}; \quad \phi = \phi_{\text{bulk}} + \frac{\delta U_{\parallel}}{U} \phi_{\parallel} d + \frac{\delta U_{\perp}}{U} \phi_{\perp} d$$

Solve static elastic equations to find U, δU_{\parallel} , and δU_{\perp} . Use half-infinite test mass approximation. Substitute into FDT to get expression for test mass thermal in noise in terms of ϕ_{\parallel} and ϕ_{\perp} .

Response to Gaussian pressure

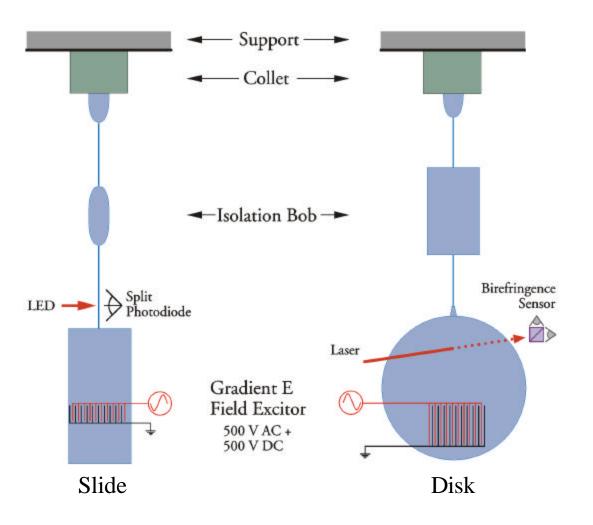
r [m]

Result

$$S_{x}(f) = \frac{2k_{B}T}{\pi^{\frac{3}{2}}f} \frac{1-\sigma^{2}}{wY} \left\{ \phi_{\text{substrate}} + \frac{1}{\sqrt{\pi}} \frac{d}{w} \frac{1}{YY'(1-\sigma'^{2})(1-\sigma^{2})} \right.$$
$$\left[Y'^{2}(1+\sigma)^{2}(1-2\sigma)^{2}\phi_{\parallel} + YY'(1+\sigma')(1+\sigma)(1-2\sigma)(\phi_{\parallel}-\phi_{\perp}) + Y^{2}(1+\sigma')^{2}(1-2\sigma')\phi_{\perp} \right] \right\}$$

Limit $\phi_{\parallel} = \phi_{\perp}$ agrees w/Nakagawa (private comm.)

$$\xrightarrow{\sigma,\sigma'\to 0} \frac{2k_BT}{\pi^{\frac{3}{2}}f} \frac{1}{wY} \left\{ \phi_{\text{substrate}} + \frac{d}{w\sqrt{\pi}} \left(\frac{Y'}{Y} \phi_{\parallel} + \frac{Y}{Y'} \phi_{\perp} \right) \right\}$$


Need to measure: ϕ_{\parallel} , ϕ_{\perp} , and Y'. G010381-00-0 Measuring the loss in Ta_2O_5/SiO_2 coatings

- Compare the ringdown times of coated and uncoated samples.
- Extract ϕ_{\parallel} for the coating loss via

$$\phi_{\text{coated}} \approx \phi_{\text{uncoated}} + \frac{\delta U}{U} \phi_{\parallel} d$$

• But can't measure ϕ_{\perp} in ringdown experiments.

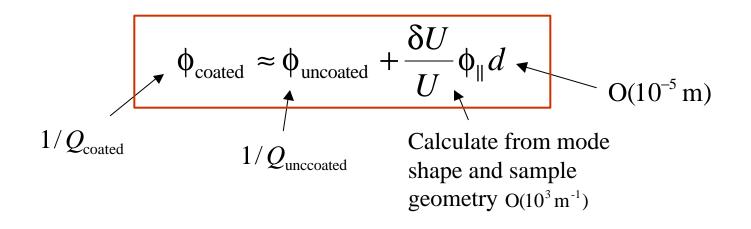
Slide and disk Q measurement setup

G010381-00-0

(Figure taken from G. Harry et al., 2001)

Measured Q's

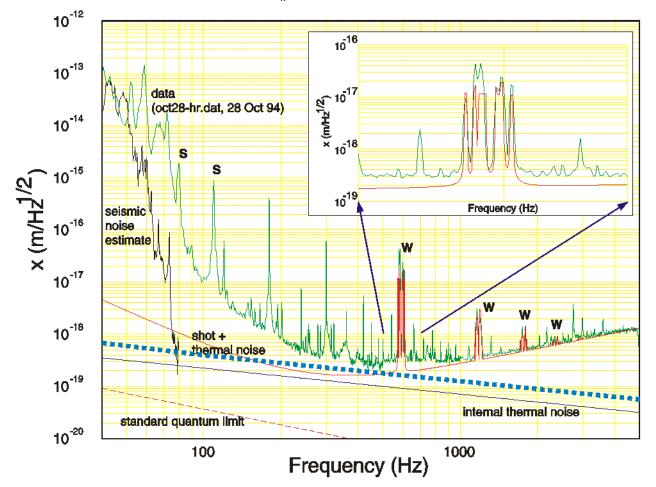
<u>Slides</u>


Slide	Coating	Mode	Frequency	Q
A	HR	2	$1022~\mathrm{Hz}$	$1.1\pm0.5\times10^5$
	HR	3	$1944~\mathrm{Hz}$	$1.6\pm0.1\times10^5$
	HR	4	$2815~\mathrm{Hz}$	$1.6\pm0.1\times10^5$
В	HR	2	$962~\mathrm{Hz}$	$1.3\pm0.1\times10^5$
\mathbf{C}	none	2	$1188~\mathrm{Hz}$	$4.0\pm0.2\times10^{6}$
	none	3	$2271~\mathrm{Hz}$	$4.9\pm0.3\times10^{6}$

<u>Disk</u>

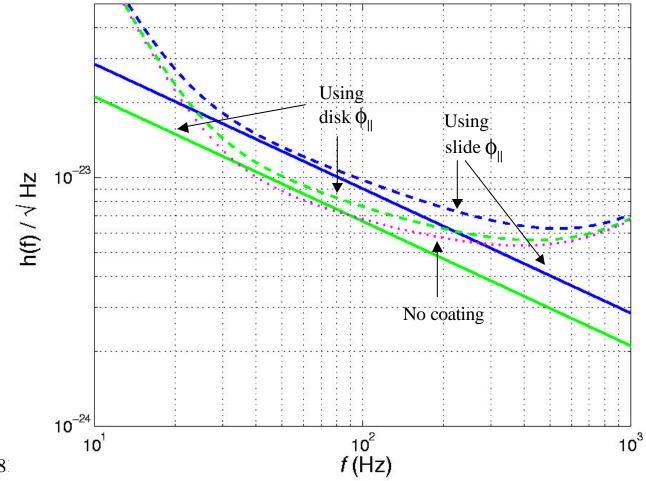
Hanging Number	Coating	Frequency	Q
1	none	$4107~\mathrm{Hz}$	$3.46 \pm 0.02 \times 10^{6}$
2	none	$4107~\mathrm{Hz}$	$3.10\pm0.007\times10^{6}$
3	$\mathrm{HR}~(45^\circ)$	$4108~\mathrm{Hz}$	$1.28\pm0.02\times10^6$
4^\dagger	$\mathrm{HR}~(45^\circ)$	$4121~\mathrm{Hz}$	$1.24\pm0.001\times10^{6}$

[†]Ear was sheared off twice before this hanging.

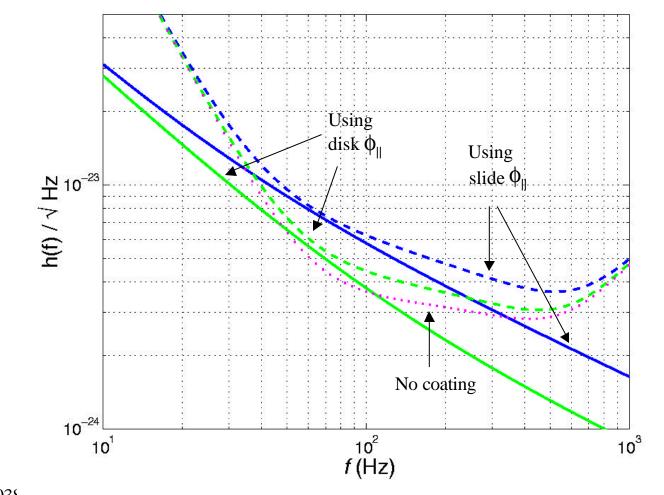

Final Result

Commercial polish slides: $\phi_{\parallel} = (4.2 \pm 0.3) \times 10^{-4}$ "Superpolished" disk: $\phi_{\parallel} = (1.0 \pm 0.3) \times 10^{-4}$

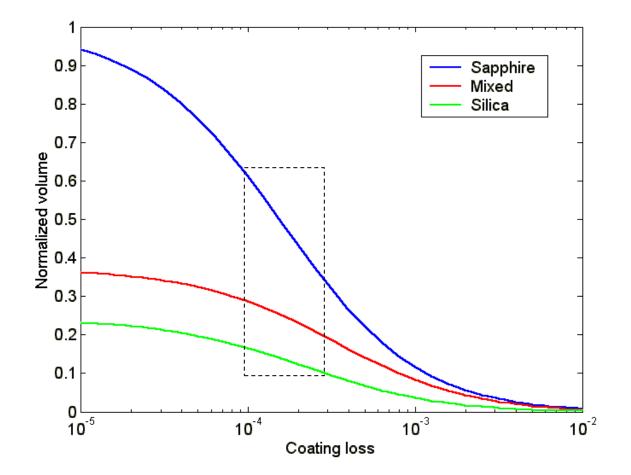
Caltech 40 meter (Oct. '94)


$$\phi_{\parallel} = \phi_{\perp} = 1 \times 10^{-4}$$

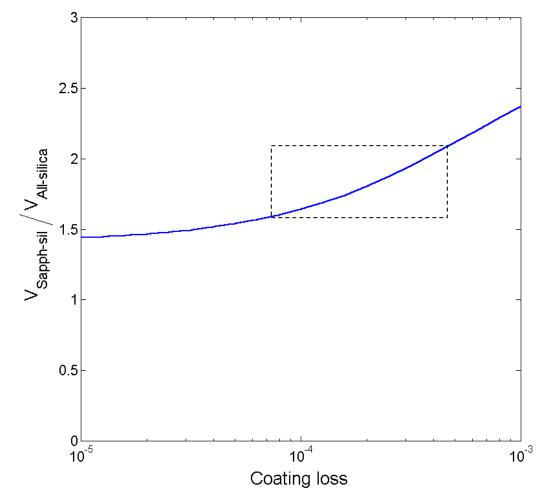
Implications for advanced LIGO


Test mass		$Q_{ m eff}$	Structural thermal noise
material	Coating loss	$(=1/\phi_{ m readout})$	at 100 Hz, $\sqrt{S_h}$
Sapphire	none	$200 imes 10^6$	1×10^{-24}
	$\phi_{\parallel} = 1 \times 10^{-4}$	$15 imes 10^6$	$3 imes 10^{-24}$
	$\phi_{\parallel} = 4 imes 10^{-4}$	$4 imes 10^6$	$5 imes 10^{-24}$
Fused silica	none	$30 imes 10^6$	$6 imes 10^{-24}$
	$\phi_{\parallel} = 1 imes 10^{-4}$	$19 imes 10^6$	$7 imes 10^{-24}$
	$\phi_{\parallel}=4 imes 10^{-4}$	$9 imes 10^6$	9×10^{-24}

Coated fused silica test masses


G01038

Coated sapphire test masses


G01038

Sensitivity as a function of coating loss

G010381-00-0 Caveat: This calculation done for half-infinite test masses

Mixed (sapph-sil) versus all-silica

If Sapphire cannot be made with sufficiently low absorbtion/ biref., need to go to silica ITM's and BS's.

Th. n. from coatings is dominated by the thick ETM coatings.

Gain by using sapphire ETM's because of high Young's modulus.

0010301-00-0

Comparison of sources of surface loss

Source of loss	α
Contamination by water (Flame drawn fiber surface)	$6 \times 10^{-12} \text{ m}$
Accidental knocking of surface (Caliper damage)	$\sim 10^{-11} \text{ m}$
Abrasion by polishing (polished samples)	$10^{-11} - 10^{-9}$ m
Application of 10μ m HR- coating (coated samples: $\alpha = \phi_{\parallel} d$)	$(1-4) \times 10^{-9} \text{ m}$

Summary

- Surface loss tends to be dominant source of loss in high Q materials.
- Ribbons thinner than ~80 µm do not lead to lower suspension thermal noise.
- The surface of uncoated, polished silica is sufficiently good for adv. LIGO (but close).
- For adv. LIGO, the addition of coatings on sapphire may decrease the volume sensitivity to ~ 0.4 - 0.8 of the uncoated value.