

Bicoherence and Bispectrum Monitor

Steve Penn, Syracuse University LSC Meeting — August 2001

LIGO-G010331-00-Z

Synopsis

• Introduction to Higher Order Statistics

- » 1D: Correlation, Coherence, Power Spectra
- » 2D: Bicorrelation, Bicoherence, Bispectrum
- » 3D...
- Bispectrum diagnostic
- Gaussianity Test
- Linearity Test

What are Higher Order Statistics?

- ID Statistics:
 - » Correlation: $C_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) d\tau \iff X(f) Y^*(f) = S_{xy}(f)$
 - » Power Spectral Density: $C_{2x}(t) \iff X(f) X^*(f) = S_{2x}(f)$

» Coherence:
$$C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{2x}(f) S_{2y}(f)}}$$

- Tells us power and phase coherence at a given frequency

LSC • August 2001 Syracuse University Experimental Relativity Group

Second Order Statistics

• 2D Statistics:

 $C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) z(t'+\tau) d\tau \iff X(f_1) Y(f_2) Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$

» Bispectral Density:

$$C_{3x}(t) \iff X(f_1) X(f_2) X^*(f_1 + f_2) = S_{3x}(f_1, f_2)$$

» Bicoherence:

$$\mathbf{C}_{xyz}(f) = \frac{S_{xyz}(f_1, f_2)}{\sqrt{S_{2x}(f_1) S_{2y}(f_2) S_{2z}(f_1, f_2)}}$$

- Tells us power and phase coherence at a coupled frequency

LSC • August 2001 Syracuse University Experimental Relativity Group

Zero-lag Cumulants

Mean	Variance	Skewness	Kurtosis
$C_{x}(0)$	$C_{2x}(0)$	$C_{3x}(0)$	$C_{4x}(0)$
		0 if Symmetric	0 if Gaussian

Useful statictical values, but... Skewness = 0 does not prove symmetry Kurtosis = 0 does not prove Gaussianity Variations in skew and kurtosis not well quantified.

Why Higher Order Statistics?

• For a Gaussian process: $C_{nx}(t) = 0$, for n > 2

• For independent processes:

$$z(t) = x(t) + y(t), \quad C_{nz}(t) = C_{nx}(t) + C_{ny}(t) \xrightarrow{n>2} C_{ny}(t)$$

- Allows for separation of Gaussian process for n>2
 - » Visual check of frequency coupling and phase noise
 - » Statistical test for the probability of gaussianity and linearity
 - » Iterative process to reconstruct nongaussian signal from the higher order cumulants

Bispectrum Unique Area

Monitor Features

- Performs cross-bicoherence (cross-bispectrum).
 User can enter 1–3 channels.
- Program decimates to the lowest channel rate.
- User can specify further decimation of the data.
- Choice of Bicoherence and/or bispectrum.
- Choice of direct/indirect methods for bispectrum.
- Example:
 - » XBic H0:PEM-BSC5_ACCX H0:PEM-LVEA_SEISX H2:LSC-AS_Q -direct -bispec -MaxFrame 900

Status and Conclusions

Monitor Good News:

- Monitor plots Bicoherence and Bispectrum
- Real time update: increase stride (slow) or skip frames (fast)
- Handles frequencies < 2k without decimation.

Updates Pending:

- Rao-Gabr 2-D windowing to smooth plots.
- Choice forhandling rate of fast channels: reducing range or reducing resolution.
- Increasing stability.