
8 June 2001 L.S.Finn/LDAS Camp 1

LIGO-G010232-00-Z

How to think about
parallel programming

8 June 2001 L.S.Finn/LDAS Camp 2

LIGO-G010232-00-Z

Programming Abstractions

! Programming involves
thinking in abstractions
» Data abstractions: e.g., arrays
» Instruction abstractions:

if/then/else, loops, case/switch
» Functions and subroutines

(matrix-multiplication(), sin())
are further abstractions built
upon abstractions

» Modularity

! Good abstractions simplify
and organize the design
space without restricting
functionality

! The von Neumann Machine
» Abstraction that underlies

modern computing

» Divides computers into
hardware and software

» Divides hardware into a central
processing unit and memory

» Divides software into
instructions operating on data

» Not an exclusive or universal
abstraction – e.g., LISP

! Parallel programming
introduces a new layer of
abstraction

8 June 2001 L.S.Finn/LDAS Camp 3

LIGO-G010232-00-Z

A Parallel Programming Model

! Focus: The Multicomputer
» A collection of von Neumann Machines that can communicate with each

other via an interconnection network, or interconnect
» Node: an individual computer (mearning von Neumann machine)
» Implications

– Distributed memory: Each node has its own memory, whose contents are not
directly accessible to other nodes

– Distributed instructions: Each node has its own cpu, executing its own set of
instructions

» A Multiple Instructions, Multiple Data (MIMD) model

! Other models
» Single Instruction, Multiple Data (SIMD): One CPU (and set of instructions)

acting (simultaneously) on many different data sets
» Multiple Instruction, Single Data (MISD): Many CPUs(and sets of

instructions) acting (simultaneously) on the same data

8 June 2001 L.S.Finn/LDAS Camp 4

LIGO-G010232-00-Z

Abstractions for
Parallel Programming

! Each multicomputer node is a
von Neumann machine

» All the usual abstractions apply to
each node

! Two new abstractions – task
and channel – deal with parallel
computation on a multicomputer

» Task: a sequential program and its
local memory (your basic computer),
together with a set of in-ports and
out-ports to communicate with other
tasks.

» Channel: an in-port/out-port pair
linking two tasks

! A parallel program consists of
one or more tasks

» Tasks execute concurrently, and
can be created and destroyed

! A task can perform four basic
actions beyond reading and
writing local memory

» Send messages on out-ports
» Receive messages on in-ports
» Create new tasks
» Terminate

! Send operations are
asynchronous

! Receive operations are
synchronous

! Channels can be created and
destroyed, and references to
channels can be included in
messages

» Allows dynamical connectivity

8 June 2001 L.S.Finn/LDAS Camp 5

LIGO-G010232-00-Z

Tasks and Channels

A channel

A task

In-port

Out-port

8 June 2001 L.S.Finn/LDAS Camp 6

LIGO-G010232-00-Z

Example:
Building the LLO IFO arms

! Two tasks
» Building beam tubes at off-site

factor
» Assembling beam tubes into an

arm
» Each task executes own

instructions concurrently

! Two communication
channels
» From factory task to assembly

task: “messages” are beam
tubes

» From assembly task to factory
task: “messages” are “send
more beam tubes”, “stop
sending beam tubes” Factory: Build task

LLO: Assembly task

Beam tubes
to LLO over
this channel

Speed-up,
slow-down
messages

8 June 2001 L.S.Finn/LDAS Camp 7

LIGO-G010232-00-Z

Tasks and Channels

! Tasks are not nodes
» Tasks are instructions and data; a node is a piece of hardware

» Multiple tasks can be mapped to a single node
» Single tasks can be mapped to multiple nodes

– This is subtle, and not commonly done, because task must be further
organized so that instructions on each node are local with the data they
operate on

! Tasks are the parallel computing equivalent of
subroutines or functions
» Modularity in a parallel programming environment

8 June 2001 L.S.Finn/LDAS Camp 8

LIGO-G010232-00-Z

Tasks, Data and Parallelism

! Tasks can do different things concurrently to the
same data
» E.g., apply different templates or analysis methods to the same

data

! Tasks can do the same things concurrently to
different data
» E.g., apply the same templates to different data sets

! There are many ways to organize a parallel program
» No one “right” way

» Don’t straight-jacket your thinking about parallelism

8 June 2001 L.S.Finn/LDAS Camp 9

LIGO-G010232-00-Z

Message Passing

! LDAS uses the Message
Passing programming model

» Tasks are identified by name

» Tasks interact by sending and
receiving messages from other
named tasks

! MPI: Message Passing
Interface

» The programming language for
message passing

! Six basic MPI “instructions”:
» MPI_INIT: initiate an MPI

computation
– LDAS does this for you!
– You will never do an MPI_INIT

yourself

» MPI_COMM_SIZE: determine the
number of processors available to
you

» MPI_SEND: Send a message

» MPI_COMM_RANK: What node am
I?

» MPI_RECEIVE: Receive a message

» MPI_FINALIZE: Terminate a MPI
computation

– LDAS does this for you!

! Masters and Slaves
» Each MPI program has a single

master task. All other tasks are
slaves.

» The master is responsible for
coordinating the action of the slaves

