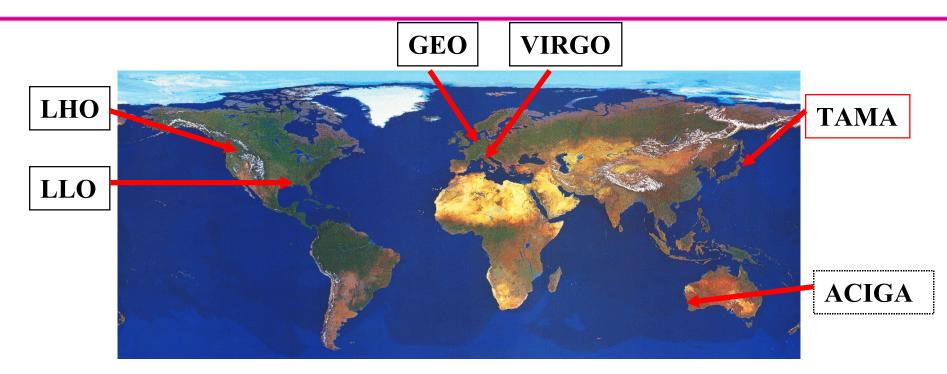
LIGO Preparation to data sharing with international partners

Annual LIGO Laboratory NSF Review

LIGO Laboratory Caltech, Pasadena April 30th - May 2nd 2001

Andrea Viceré LIGO Laboratory Caltech


LIGO-G010205-00-E Annual LIGO Lab. NSF Review

Motivations

- In the long term, we expect the observatories to do collaborative data analysis at different levels and cooperate as a network of detectors.
- This goal requires several steps: we focus here on some of the technical ones, related to data exchange.
- Lots of data are already being acquired: in particular, environmental monitoring data.
- Learning to exchange and analyze these data shall give us the experience needed for the future physics data.

Observatories sites

 LIGO and GEO will collaborate fully on data analysis
LIGO and VIRGO shall start from exchanging physics environmental monitoring data

LIGO-G010205-00-E Annual LIGO Lab. NSF Review

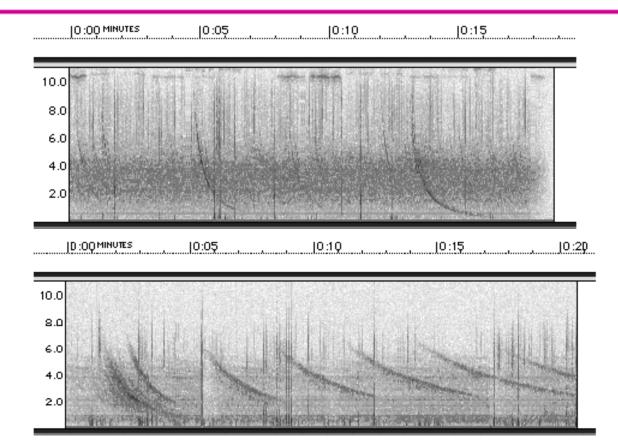
LIGO

Challenges of the network analysis approach

✓ Different instruments → specific data streams

- $\checkmark\,$ Define common denominators, agree on the meaning of things
- ✓ Scientists need to build an understanding of each other dataset.
- ✓ Widely separated sites →transport issue
 - $\checkmark\,$ Define bandwidth requirements, optimize information/cost
 - $\checkmark\,$ Verify effective band, availability, robustness
 - ✓ Address issues of usability, security
- \checkmark Multi-instrument analysis \rightarrow new value, added costs
 - ✓ Need to understand the better way to perform common analysis
 - ✓ Wide range of options, from event list comparison to full multidimensional analysis: need experience

Science issues


- PEM data convey already some physics!
- Seismic events can correlate on the LIGO-VIRGO distance
 - ✓ Events originating close to the equidistant plane can correlate within the narrow (+/- 40 ms) window common with GW detection
- Electromagnetic events are transported to long distances ionosphere
 - ✓ In particular the interaction of lightnings and the magnetosphere causes VLF EM signals potentially affecting LIGO band as *whistlers*
- Coincidences in these data can serve in the future as vetos for the network analysis

LIGO-G010205-00-E Annual LIGO Lab. NSF Review

LIGO

LIGO

Candidates: the whistlers

- Typical natural radio signals
- A spectrogram reveals the nice "chirping" waveform
- Luckily enough, unmistakable for inspirals!

http://image.gsfc.nasa.gov/poetry/inspire/advanced.html

LIGO-G010205-00-E Annual LIGO Lab. NSF Review

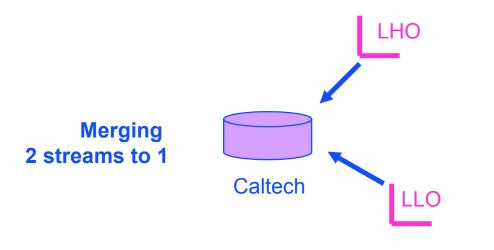
Experience: LIGO-LIGO data exchange

✓ 4-day test during E3 run

✓ Real time generation & merge

Benoit Mours Szabolcs Marka

Technologies exercised: RDSwriter (channel selection) ssh (secure transmission) cron (timing) rsync (Unix replication)



Multiple Observatory Prototype

✓ Combining Data Streams

 \checkmark real time generation, transfer, merge

Benoit Mours Szabolcs Marka

Technologies exercised: DMT (realtime data stream transform) ssh cron rsync

Achieved 12 - 80 kbyte/sec

LIGO-G010205-00-E Annual LIGO Lab. NSF Review

LIGO-Virgo data exchange

✓ Background

LIGO

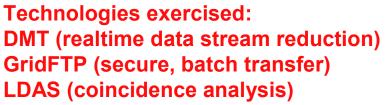
- ✓ LIGO-Virgo meeting on the concept [2/10/2000]
- ✓ LIGO-Virgo meeting focused on PEM details [2/11/2001]

✓ PEM channels

- ✓ Sites involved: Cascina [VIRGO], Hanford & Livingston [LIGO]
- ✓ Seismometers: 1/site, 256 Hz sampling, 1 Kbyte/sec
- ✓ Magnetometers: 4096 Hz sampling, 8 Kbyte/sec [compressed!]
- Data rates necessarily limited
 - ✓ Start by June 1st 2001, exchanging few tens of Kbytes

LIGO-Virgo projected exchange architecture

 \checkmark No strain data for the moment: limit to seismic and electromagnetic sensors

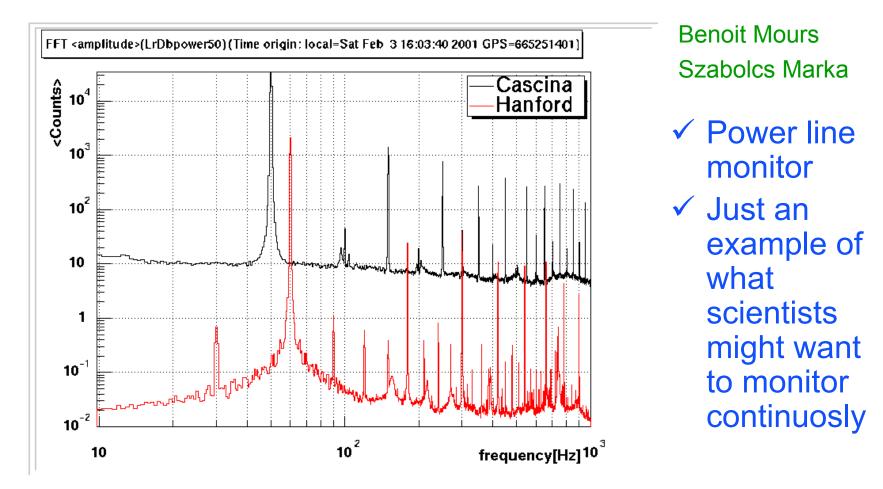

Correlate signals

(LDAS)


Annual LIGO Lab. NSF Review

LIGO

Benoit Mours Szabolcs Marka **Roy Williams**


. . . .

Coincidence

events!

Example of analysis using two sources

LIGO-G010205-00-E Annual LIGO Lab. NSF Review

LIGO