LIGO Science Reach

Lee Samuel Finn Center for Gravitational Physics and Geometry, Penn State

05 February 2001

Introduction

- What is "science reach"?
 - Instrument sensitivity to target science
 - What kind of science, can we expect with first, second generation LIGO instrumentation?
- Conservative approach
 - Focus where speculation can be minimized

- Miss out on most exciting prospects!
- Outline
 - LIGO I, II baseline recap
 - Compact binary inspiral
 - Stochastic gw signal
 - γ-ray bursts
 - Core-collapse supernovae
 - Summary

LIGO baseline recap

- LIGO I
 - Fixed configuration
 - Peak "sensitivity"
 - $3-6 \times 10^{-23}/Hz^{1/2}$ in
 - 75 500 Hz band

- LIGO II
 - Configurable
 - Broad or narrow band operation on a per-IFO basis
 - Peak sensitivity: broadband
 - $1.5 3 \times 10^{-24} / Hz^{1/2}$ in 150 600 Hz band
 - Peak sensitivity: narrowband
 - Limited by substrate thermal noise

Binary Inspiral

- Reach: Survey volume
 - Distance *r* such that observed rate is $4\pi r^3 n/3$
 - Allow for luminosity function, cosmology, etc.
- Parameters
 - $M = 1.4+1.4 M_{\odot}$ binaries
 - $r \sim M^{5/6}$ for M<10M_•
 - Expected false rate
 - $< 10^{-4}/y$
 - Corresponds to $S/N \sim 8$
 - $r_{\text{LIGO I}} = 14 \text{ Mpc}$
 - $r_{\text{LIGO II}} = 200 \text{ Mpc}$
 - $-x \sim 1.5$ for coherent sum

05 February 2001

Periodic Signals

- Focus on pulsars
 - $f_{gw} = 2f_{pulsar}$ $h \propto \varepsilon = (\Delta I / I)$
- Reach: upper limit on ε
 - 1 yr observation
 - 10 Kpc distance
 - Declination average
 - Significance: 95%
- Theoretical prejudice
 - $\epsilon < \sim 10^{-6}$
 - From pure Coulumb lattice crust strength

- Observational constraints
 - $\varepsilon < \sim 10^{-8}$ for *old* (recycled) pulsars

05 February 2001

Stochastic Signals

- Single IFO can't separate between signal, noise
- Reach: Limit on $\Omega_{\rm GW}$
 - GW energy density, as fraction closure density, per log bandwidth
 - 99% significance
 - 1/3 yr observation
- LIGO I: 3.3x10⁻⁶/h²
- LIGO II: 2x10⁻⁹/h²

- Two detectors respond ~coherently when $\lambda > d$
 - LHO-LLO: *c/d*=100 Hz
 - LLO-ALLEGRO: *c/d* >> KHz
- Theoretical prejudice:
 - Inflation: $\Omega_{\rm GW} \sim 10^{-14}$
 - Comic Strings: $\Omega_{\rm GW} \sim 10^{-11}$
- In-band observational constraints:
 - N.synthesis: $\Omega_{\rm GW} \sim 10^{-5}$

γ-ray bursts

- γ -ray burst triggered by formation of $\sim M_{\odot}$ bh
 - Expect grav.-wave burst
- Individual grav.-wave bursts not detectable
 - Distance, amplitude, etc., conspire against
- Look for statistical association:

Hypernovae; Black hole + collapsars; NS/NS, debris torus NS/BH, He/BH, WD/BH mergers; AIC; ... γ-rays generated by internal or external shocks Relativistic fireball $h_{\text{Det}}^2 < h_{95\%}^2 = \begin{cases} \left(1.35 \times 10^{-22}\right)^2 \\ \left(2.5 \times 10^{-23}\right)^2 \end{cases} \left\{ \left(\frac{T}{0.2\text{s}} \frac{1000}{N_{\text{on}}}\right)^{1/2} \right\} \end{cases}$ LIGO I LIGO II

- LIGO II bound equiv to $\sim 0.3 M_{\odot}$ in grav.-waves at z = 1/2

Core-collapse supernovae

- Assume:
 - LIGO II observation of extra-galactic SN
 - Light curve fixes collapse to within 1h
 - LIGO I observation in galactic neighborhood
 - Neutrinos fix collapse to within 1s
 - Waveform unknown
 - Focus on detectordetector x-correlation
 - 1 KHz signal bandwidth

- Reach:
 - Mass fraction ε converted to gravitational waves
- LIGO II:
 - $\epsilon_{95\%}$ < 24% for SN at 15 Mpc
 - Expected rate 3/y
- LIGO I:
 - $\epsilon_{95\%} < 2 x 10^{-4}$ for SN at 55 Kpc
 - Expected rate 1/30y
- Theoretical prejudice - $\varepsilon < 10^{-7} - 10^{-8}$

05 February 2001

Summary

- LIGO I bounds the possible
 - Bound outside estimates on inspiral rates
 - Upper limits probes
 prejudice on pulsar crust
 strength upper bound
 - Improve in-band limit on stochastic GW background
 - Possible physical bound on SN efficiency

- LIGO II challenges theory
 - Observe several NS/NS inspirals per year
 - Measure deformation of nearby pulsars
 - Improve limits on stochastic background
 - Maybe explore γ-ray burst model
 - Physical bound on SN efficiency