Chaos in Spinning Compact Binaries?
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Nearby trajectories in chaotic systems diverge
exponentially

e The Poincare surface-of-section method for identifying chaos generally only works for sys-
tems with two degrees of freedom (4-dimensional phase space)

e For systems with many degrees of freedom, the most definitive method for identifying chaos
is by measuring Lyapunov exponents 2

e If the distance in phase-space d grows like:
d = d,exp(vt)

then we can define the characteristic Lyapunov exponent v as
In(d/d,)

= lim ————~
e

e Chaotic systems diverge on a time-scale of the Lyapunov time =

=2 [

e For regular (quasi-periodic) systems, v — 0

2G. J. Sussman and J. Wisdom. Science 241, 433 (1988).



Test particles orbiting around two fixed point masses

exhibit quasi-periodic as well as chaotic behavior *
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We use Post-Newtonian equations of motion to
calculate trajectories with spin effects *
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The spins also precess due to frame-dragging and the Lens-Thirring effect.
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With both objects spinning maximally, the orbits
appear to be irregular and perhaps even ‘“chaotic”...
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...out NO CHAOS IS OBSERVED, even on a time
scale much longer than the typical in-spiral time

~hase opoce separation
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Conclusions and future work

e We can identify chaotic and quasi-periodic orbits for test-particle motion in a Hamiltonian
system by measuring Lyapunov exponents

e Using PN equations of motion, we have calculated compact binary trajectories including
spin effects

e NO CHAOTIC behavior has been observed in the in-spiral region of the LIGO frequency
band

e Future work includes modifying existing templates to account for spin effects

e Look for precessional resonance signals as system sweeps through orbital frequency band



