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Why Keep Studying Violin Modes?

● Choice between ribbons & fibers will require better 
knowledge of noise performance.

● Suspension thermal noise is not expected to 
dominate optical noise in Advanced LIGO, but 
predicted low loss not yet demonstrated.

● Low frequency searches can reduce optical noise by 
reducing laser power and/or removing signal 
extraction mirror, thus exposing suspension thermal 
noise.

● Violin resonances can interfere with locking and 
control.
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Suspensions Apparatus

Automated fiber pulling lathe

Q-measurement rig
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Suspensions Apparatus
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Violin Mode Frequencies
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Measured Mode Frequencies
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Measured Mode Frequencies

‘Fit’ of measured
mode frequencies
to model with radius
as free parameter
gives

with <.5% error for 
all modes
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How the frequencies change for 
1µm change in fiber radius
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Welded Fiber End
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Vertical Bounce Modulation

! 16.65Hz "
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Vertical Bounce and Violin Vibrato

Violin mode amplitude:

Strain amplitude:
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Nonlinear Thermoelastic Damping

Loss function φ:
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● Of all the parameters that determine φNTE, the 
temperature dependence of the Young’s modulus is 
most uncertain: published values vary by factor of 3.
» Measurements made from ~10kHz to GHz frequencies
» Measurements made using various mechanical & optical 

techniques
» Measurements made using many different types of fused silica

● Need exists for measurements on our fused silica 
(Suprasil 2), in our frequency range, and in our mode 
of oscillation (bending).
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Apparatust Measuremen 
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Data 
E
dT

dE
 

Data consistent with
(dE/dT)/E=1.52e-4/K±5%. 
Main source of error
is calibration of oven.

Note: B. Lunin 
measures 2.2e-4/K for 
similar glass (Suprasil 300).
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Total Intrinsic Loss in Fibers
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Q of a Violin Mode
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Removal of Sidebands by Digital 
Filtering
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More Digital Filtering
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Filtered Ringdown Data
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Our Data

● Bear in mind that the 
predictions of the LTE model 
are upper limits only.

● ‘NTE’ prediction based on 
published values for φbulk, 
φsurface.

● We believe this to be the first  
observation of nonlinear 
thermoelastic damping.

● Future work: 
» Measure φbulk, φsurface.in 

unloaded fiber
» Measure Q of vertical bounce 

mode 
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Why Study Vertical 
Bounce Mode Q’s?

● The vertical bounce mode probes the entire fiber 
uniformly, unlike the pendulum and violin modes 
which weight the endpoints more heavily.

● The vertical bounce mode has no dilution factor.
● The vertical bounce mode has no thermoelastic 

damping.
● Thus the vertical bounce mode permits the clean 

study of the internal friction of fused silica at high 
strain.
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Internal Friction at High Strain in 
Fused Silica

● So far, no good data exists at strains relevant for Advanced 
LIGO (u~.005-.01):

» Braginsky et al. measure Q consistent with φ=1.4e-6 at u=.005
» Data above consistent with φ=7.8e-7 at u=.003
» Rowan et al. measure data consistent with φ=7e-7 at u=.0002
» Rowan et al. measure data consistent with φ=1.5e-6 at u=.002
» Advanced LIGO baseline assumes φ=2e-7 at u=.01

● Discrepancies could be due to recoil losses or contamination 
due to welding, but stress-dependent φ cannot yet be excluded.

● Fused silica is getting nonlinear at these strains… Young’s 
modulus changes by ~1e-2 at u=.003 (note: φ is only 1e-6!).

● It is prudent therefore to check stress-dependence of φ
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Vertical Bounce Measurement 
Apparatus- in Preparation

! isolation stage

! stage under test
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Expected Sensitivity

● Use of monolithic fused silica upper suspension 
should contribute negligibly to loss from that stage…

● Fundamental recoil limit should be through 
suspension mounting structure- previous rigidities 
achieved at Glasgow should allow 1/Qrecoil~1e-7 for 
50um fibers holding 200g

● Hopefully new ultraheavy pendulum laboratory will 
permit larger fibers to be tested.


