Laser Development for Advanced LIGO

Benno Willke

LSC meeting LIGO-Livingston Site, Mar 2001

LIGO-G010114-00-Z

LIGOII PSL – requirements

- 180W in gausian TEM₀₀ mode
- less than 10W in non TEM₀₀ modes

Fourier Frequency (Hz)	Power Noise Spectral Density (1/Hz ^{1/2})
10	10-6
100	10-7
1k	10-7
10k	10-7
25MHz	technical noise <10% shot noise of 1W

Fourier Frequency (Hz)	Frequency Noise Spectral Density (Hz/Hz ^{1/2})
10	10
100	1
1k	10-1
10k	10-2

LIGOII PSL – subsystem layout

LIGOII PSL – project stages

- develop concepts
- design and build laboratory version
- design and build final version
- PSL fabrication
- PSL installation

develop concepts

- increase power of front-end
- evaluate high-power-stage concepts
 - MOPA slab (Stanford)
 - stable-unstable slab oscillator (Adelaide)
 - rod systems (Hannover)
- test power and frequency stabilization schemes

Laser for GEO600: Injection Locked Ring Laser

Nd:YAG Master-Laser

NPRO (non-planar ring oscillator) by Innolight*

- output power: 800mW
- frequency noise:
 [10kHz/f] Hz/sqrt(Hz)
- power noise: 10⁻⁶ /sqrt(Hz)

* US dristibution: Resonant optics Corp., San Martin CA

Laser for GEO600: Injection Locked Ring Laser

GEO 600 Slave Laser

GEO 600 Slave Laser Prototype II

Frequency Stability

 \Box

Power Scaling of End Pumped Nd:YVO₄

Advantages of Nd:YVO₄¹⁾

- amplifies 1064 nm emission of Nd:YAG (basic requirement)
- birerefingence $n_a = 1.96 / n_c = 2.17$ \rightarrow no depolarization
- emission $\sigma_{//} = 25 \times 10^{-19} \text{ cm}^{-2}$ $\sigma_{+} = -7 \times 10^{-19} \text{ cm}^{-2}$ \rightarrow polarized emission
- large product of $\sigma_{//} \tau_{sp} (\tau_{sp} \cong 90 \,\mu s)$ \rightarrow loss insensitive high gain lasers
- 8 nm broad absorption @ 808 nm
 → low requirements on pump diodes

Disadvantage of Nd:YVO₄¹⁾

 low pump intensity damage threshold 58 W / mm² @ 0.5 % doping 29 W / mm² @ 1.0 % doping increased by 50 % by undoped endcaps

1) Data from Y.-F. Chen, IEEE J. Q. E. 35(2), 234 (1999) / Tsunekane et. al. Elt. Lett. 32(1), 41 (1996) / VLOC, Casix, Castech web pages

LIGO-G010114-00-2

Stanford MOPA design

results Stanford Jan01

- 12W injection locked laser was shipped to Stanford and showed stable operations
- 27W stable operation of first ampl. stage
- some fluid (oil ?) developed on the entrance surface of second ampl. slab and degraded its performance for powers above 35W

Adelaide 100W configuration

100W Laser Configuration

design and build lab-version

- design reliable laser heads for power stages
- include suitable actuators in laser design
- integrate stabilized front-end, highpower-stages and pre-modecleaner
- design power stabilization (in-loop test)

design and build final version

- optimize design according to lessons learned with lab-version and including system aspects like reliability, safety, robustness, automation and system interfaces (DAQ, power, cooling, ...)
- keep flexibility to react on long-term behavior of lab-version

PSL fabrication & installation

- quality check
- system integration (if components are fabricated at different locations)
- reproducibility
- user training

the LIGOII laser-team

LIGOII laser-team

- 4 FTE Laser Zentrum Hannover
 - Fallnich, Ralf, Ivo, Mike, Martina
- 1 FTE Stanford Rutherford
- 1 FTE Adelaide Veitch
- 3 FTE University Hannover/Max-Planck-Group
 - Willke, Kirchner, Weidner, Nagano
- 1 FTE Glasgow
 - Ward, Robertson
- 1 FTE LIGO
 - King, Abbott
- workshop support Hannover / CDS

LIGOII Laser – project plan

- concept phase (100W)
- lab-version phase (200W) Apr02 Feb04
- longterm test (Hannover/LASTI) Feb04 Feb 05
- final version phase
- installation PSL1
- fabr. & inst. PSL2&3

Feb04 – Jul05

Jan01 - Apr02

- Jul05 Feb06
- Feb06-Oct06

