Adaptive Optics for Wavefront Correction of High Average Power Lasers

Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and Robert L. Byer

LIGO-G010113-00-Z

Outline

- Motivation Laser Aberration Removal
- Effects of Zernike Aberrations on Laser Beam Quality
- Measured Laser Aberrations
- New Micromachined Deformable Mirror
- Laser Aberration Compensation Experiment
- Conclusions and Future Work

Motivation

- Aberrations remove light from the interferometer
- "Quasi-Static" diode failures and power fluctuations change the aberration shape and amplitude.

LIGO Front End

Effects of Zernike Aberrations

- Zernikes a set of orthogonal polynomials defined about a unit circle used to describe wavefront aberrations in optical metrology
- Effect of Zernikes can be understood by performing the overlap integral (a.k.a., inner product) of the perfect and aberrated electric field distributions.
 - Mansell *et al.* "Evaluating the Effect of Transmissive Optic Thermal Lensing on Laser Beam Quality With a Shack -Hartmann Wave-Front Sensor" Applied Optics **40**, p.366.

Zernike Polynomials

Transmissive Optic Thermal Lensing

Slab Laser Amplifier Aberrations

<u>Term</u>	Norm Coeff	Coeff(µm)	Description
Z11	4.26E-04	0.84	tilt about z axis
Z10	4.08E-04	0.806	tilt about y axis
Z22	1.78E-04	0.352	astigmatism with 0 or 90 axis
Z21	1.16E-04	0.23	focus shift
Z42	-3.80E-05	-0.075	third order spherical aberration
Z43	-2.73E-05	-0.054	

3D View of Mirror Architecture

Cross-Section of Mirror Architecture

Stanford DM Photograph

Stanford's Silicon DM Characteristics

- 19 actuators with 2.3mm spacing in a 1.6cm aperture
- Low Static Aberrations ($\sim\lambda/2$ PV in astigmatism)
- **Good Power Handling** (42nm rms surface distortion from 4.5W of cw 1064nm laser light)
- **Versatile** (10µm throw in center actuator)
- Low Power (200V to actuate, but almost no current)
- **Fast** (>500Hz mechanical resonance frequency)
- Low-cost fabrication
- **Robust** (Electrostatic snap-down does not damage the mirror and is fully recoverable)

Stanford DM in Zernike Terms

X-Axis Tilt

Triangular Astigmatism

Y-Axis Tilt

Focus

X-Axis Coma

Vertical Astigmatism **Y-Axis** Coma

Spherical Aberration

45° Astigmatism

Triangular Astigmatism

Intellite

"Optical Communications" via Spatial Phase

STANFOrD

Experimental Results

Initial

Corrected

Wavefront

S14

S1

• Started 92% in TEM₀₀ mode.

2 3 1

26

3

. ف

- AO increased to 95%.
- Pumping reduced to 31%
- AO increased to 89%

Phase (μm)

0.5

-0.5

Justin Mansell – jmansell@intellite.com

MOPA AO Far-Fields

Conclusions

- Introduced new type of silicon deformable mirror designed for high power laser operation.
- Demonstrated active compensation of slab amplifier distortions.
- Increased TEM₀₀ mode power coupling from 31% to 89%.
- Thanks to the NSF for funding this work.

Future Work

- Low Absorption Coatings
- Three-Level Architecture
 - Piston Bias Condition
 - Larger Area & Higher
 Resonance Frequency
 - Lower Crosstalk
- Low Cost System
 Integration
 - Cheap Wavefront Sensor
 - Cheap Control Computer

