Cryogenic interferometer R&D ideas

Cryo-LIGO

Riccardo DeSalvo LSC Meeting March 14th, 2001

LIGO-G010110-00-D

Riccardo DeSalvo

Baton Rouge, March 14th, 2001

- LIGO Mechanical limitations.
- Present LIGO
 - Limited by metallic suspensions
- Advanced LIGO
 - Limited by fused silica thermal noise
- Cryo-LIGO
 - Will use crystals (sapphire)
 - Reduce thermal noise by
 - Reducing KT (T^o K-^{1/2} only!! Gain of 10 at 3 ° K)
 - Take advantage of higher Q factors at low K
 - At cryogenic temperature thermo-eleasticity and other problems fade away

- Present LIGO
 - From 50-80 Hz up
- Advanced LIGO
 - From 10-20 Hz up
- Cryo LIGO
 - Low frequency (5Hz < f 100 Hz) low power interferometer
 - $\sim 10^{\circ}$ Kelvins
 - High frequency (50 Hz f < 3kHz) high power interferometer
 - ~30° Kelvins

- Cryo-LIGO will be heat evacuation limited
- Radiative cooling is not an option because It behaves like T⁴
- Heat conduction or heat extraction?
- May need both sequentially !!!

Needs outline

•	Energy conservation:	
	 Substrate loss improvement R&D 	[1]
	 Coatings absorption reduction R&D 	[1]
•	Thermal noise reduction aim:	
	 Coatings (substrate mechanical loss R&D 	[1]
•	Heat conduction from mirrors	
	 Flex rod development 	[2]
•	Heat extraction techniques	
	– Metal, Super-fluid He, Optical	[3,4]
•	Test facilities	
	 KEK suspended cryogenic F.P. 	[2]
	 Kashiwa rapid cycle test facility 	[3]
	 Other test facilities 	
•	Development prospects color code	
	 parallel with Advanced LIGO 	[1]
	 LIGO direct contribution 	[2]
	– LSU, KEK, ICRR, Roma 1 University/LNF	[3]
	 DOE support 	[4]
Ric	ccardo DeSalvo Baton Rouge, March 14th, 2001	5

• To put things in perspective:

- A 1 ppm absorption mirror with 1 MW circulating power dissipates 1 W on mirror
- At cryogenic temperatures 1 W is problematic !!!
- Conducting it through the isolation system is daunting.
 - Classical conduction through ultra-pure and annealed copper or aluminum.
- Must conduct all heat through crystalline struts
 - Need large cross sections for conductivity
 - Need thin flex joints for isolation and thermal noise
- All power must transit through flex joints

The LCGT test

- Used four 250 µm diameter 100 mm long sapphire fibers
- Extract of the order of 10 mW of power
- Thermal drop of order of 20° K
- => Mirror above 25° K
- If and only if can produce a <u>mechanically quiet</u> cold finger at 4° K
 - No boiling Helium allowed,
 No thick heat conductors allowed

- Cryo-LIGO will be heat evacuation limited
- Waste heat reduction
 - Mirror coating losses reduction <0.1 ppm
 - Substrate losses reduction ~ ppm/cm
- Heat conductivity (from mirror)
 - Third power of temperature in crystals
 - Increasing with decreasing defect density
- Heat extraction technique
 - Metal conduction ?
 - Heat piping (Superfluid Helium) ?
 - Active extraction ?

First developments needed Conservation !!

- Need a long term mirror coating R&D to reduce coating absorption much below 1 ppm (1 ppm?)
- Need a long term crystal growth R&D to reduce Sapphire bulk absorption below 20 ppm/cm

Other developments needed Mechanical losses !!

 Need a long term mirror coating R&D to develop lower mirror mechanical losses

• Problem probably underestimated

(1) At resonant frequency

(2) In observation band (<< resonant frequency)

by Kazuhiro Yamamoto

Frequency [Hz]

by Kazuhiro Yamamoto

- In all cases
- need Sapphire suspensions from mirror leading to at least one recessed cooling stage.
 - Need cross section to carry heat
 - Need low defect crystals for higher conductivity
 - Fibers are practically ruled out
 - Wrong aspect ratio (LCGT test)
 - Will need rods with short flex joints
 - Mass of rods will limit isolation properties

Will need rods with counterweights

Riccardo DeSalvo

Baton Rouge, March 14th, 2001

Thermal Flow in sapphire Flex-joint

Half system modeled: Mirror / rigid wire with Flex joint

-

- Non linear conductivity of Sapphire

Problem: conductivity from 0 to 30°K?

- Loads applied:

- Space temperature: 4°K
- Laser source: 10 mW at the center of the mirror
- Symmetrical condition: Heat flux=0 at the interface
- Need to be studied:

Material properties (non-linear conductivity, etc.), Operating conditions for loads

Frédéric Sève March 2000

Sample results for a simpler simulation (imposed temperature)

Frédéric Sève March 2000

- How to make rods with
 - Counterweights and
 - Flex joints
 - Low defect crystal material
- Use UltraSound machining
- Surface treatments
 - (equivalent of flame polishing)
 - Ar-cluster polishing
 - Laser heating
 - Electron beam healing
 - Simple baking

Advantages of flex joint links

- If 3x3 rods instead of 250 μm Φ fibers => Gain of 180 in cross section (conductance)
- Flex joint over < mm (instead of ~300 mm fibers) =>Gain of >300 in thermal resistance
- Low defect crystals
 => ballistic heat transport

UltraSound machining of crystals

- Tool energized with U.S.
- Optical polishing powder carried in slurry
- Abrasive renewed by oscillating tool (static US machining) or

Ultrasound machining of crystals

More examples;

Riccardo DeSalvo

Baton Rouge, March 14th, 2001

The Flex struts plan

Engineering studies (INSA)

Machining tests (CIT)

– Q testing (INSA, SU), . . .

Ar- cluster polishing

 A jet of Argon droplets electrostatically accelerated abrades the surface

Riccardo DeSalvo

Baton Rouge, March 14th, 2001

Ar- cluster polishing

- Argon cluster has effective high temperature
- Locally remelts material that then recrystallize (flame polishing equiv.)
- Mechanically remove excess material

Effects of Ar-cluster polish

Riccardo DeSalvo

Baton Rouge, March 14th, 2001

Basics of Optical Refrigeration

Three-level "atom" in a transparent solid

Practical Optical Refrigeration

Semiconductor test Cooling Element For LIGO

Riccardo DeSalvo Baton Rouge, March 14th, 2001

Problems with optical chiller

- Need large optical power
- Efficiency ~ kT/1eV
 ~10⁻⁴ @3°K
- Must evacuate pump light to better than ~10⁻⁴
- Must extract light from high refractive index medium
 - Will need extensive A.R coatings

Optical chiller development

• Applying for DOE development grant at Los Alamos

Problems with superfluid helium

- Above ~ 0.1 W/cm² goes normal
 - (boils off)
 - Requires ~ $10 \text{ cm}^2 / \text{W}$
- Conducts phonons coherently, so short circuits thermal,
- But also acoustic conductor to all outer surfaces
 - (Pumping noise, ambient noise)
- Must be recessed from test mass at least two sapphire isolation stages

- Other needs
- To match the low displacement noise possibly achievable.
- Need matching seismic attenuation system that also allows suspension of "uncontrolled" mirrors (OK with SAS)
- Need to develop wireless, low power electrostatic actuators for lock acquisition and for actuation of cold masses above mirror

图7 低温鏡 イストールプラン

H13 KEK共同開発研究 低温鏡熱雑音の測定

The KEK cryogenic test facility

- Test present and advanced heat extraction techniques
- Test bed for different geometrical solutions
- Eventually mirror thermal noise test facility

Baton F

- Dual Frequency ranges
- Dual Cooling techniques
 - Low Frequency, local cooling
 - Optical chiller
 - High Frequency extensive conduction cooling
 - Superfluid Helium
 - Metal conduction
 - To boiling Helium
 - (Peltier pumps ruled out)

```
Sensitivity Options
```


Riccardo DeSalvo Baton Rouge, March 14th, 2001

- In the low frequency range lower shot noise requirements
 - Can reduce circulating power by factors of 10 to 100
 - Can increase finesse and further reduce input power
 - Possibly use optical chilling after just one isolation stage
- In the high frequency range
 - Must use temperature drop to feed power across multiple isolation stages to noisy heat pipe.
 - Less isolation constraints
 - Can use shorter, thicker links for better conductivity

Comparative advantages of a low/high frequency, low/high power interferometer

- 4°K/30°K
- 1kW/25kW B.S. power
- 250/50 Finesse
- 250 kW/1.25MW circulating power
- 0.1 ppm coating absorption
- 3 ppm/cm bulk absorption
- 25+30 mW/125+750 mW deposited power
- Radiation Pressure Fluctuation / Shot noise limited
- Starts looking feasible

Conclusions

- Cryogenic interferometers have great promises
- Will need massive amount of basic R&D
- Need more collaborators
 - Cannot burden Advanced LIGO but will have plenty of synergy

Conclusions

- Studies on mirror and substrates together with Advanced LIGO
- Study mechanics of thick suspensions (INSA)
- Develop sapphire joint machining techniques (CIT)
- Study metallic conduction avenue and geometries (LSU)
- Participate in construction of cryogenic testing facility (KEK)