

Data Compression study with E2 data

S. Klimenko, B. Mours, P. Shawhan, A. Sazonov

March LSC 2001 meeting Baton Rouge, Louisiana

LSC Session: Detector Characterization

Purpose of the study

- Use the E2 data as bench mark for
 - » existing compression methods
 - » new compression methods
- Issues investigated:
 - » effective compression factor
 - » compression/uncompression speed
 - » bias introduced in the data for lossy compression
- Detailed report available (LIGO-T010033-00-E)

Available Frame Compression (Format Spec. & I/O library)

- Only lossless compression methods
- Compression done at the vector level
 - » No need to uncompress unused channels.
- Standard gzip
 - » Integer are differentiated to improve compression factor.
- Zero suppress
 - » Differentiated data are stored with the minimal number of bits needed.
 - » Available only for integer.

Lossless Data Compression Performances

	Full Frames	RDS Frames
Number of bits to store a short (z. sup.)	6.1	7.6
Number of bits to store a float (gzip)	21.4	23.7
Compression/uncomp. speed (short; z. sup.)	13/12 Mb/s	12/20 MB/s
Compression/uncomp. speed (float; gzip)	1/3 MB/s	2/11MB/s
Fraction of float	31%	64%
Raw Size	3.2 MB/s	1.5 MB/s
Size after gzip + Zero supp.	1.7MB/s	1.0 MB/s

Speed measured on a Sun Ultra 10 @ 450 Mhz The IFO was lock for this data set.

• Remarks:

- » Poor speed and compression factor for float
- » People use floating points

New Lossless Compression for float

Method:

- » Handle floating point numbers as if they are integer numbers
- » Apply differentiation and zero suppress algorithms.
- » It works because the sign and exponent stored in the most significant bits change slowly from one data word to the next one.
- Same compression factor as gzip
 - » 22-24 bits per word
- Much faster method:
 - » 30MB/s compression
 - » 60MB/s uncompression

LIGO

New Lossy Compression for float Convert float to integer

- Method: Convert floating point to integer.
- Technique
 - » Differentiate the data and digitize the differences: $(s_{i+1}-s_i)/k$
 - » Round off is done by checking that the rebuilt data do not diverge from the original data.
- Data saved
 - » First value, the differences converted to integers, a scaling factor.
- One parameter: number of bits to store the integers
- Speed: Fast
 - » compression 11 MB/s*, uncompress 24 MB/s

*(assuming a predefined number of bits for storage)

Noise for the float to int. method

Need on average 7.5 bits per word

LIGO

Wavelet compression

- Signal dynamic adjusted to follow the noise floor
- Large compression could be achieved

LIGO-G010095-00-E

Wavelet: noise introduced

9

Summary

- The best 'compression' is to record only what you need:
 - » right channel, right frequency, right type (integers are better than floats)
- Existing tools
 - » Work OK short integer, Poor on float
- New lossless compression for floats
 - » Solves the gzip speed problem
- Lossy compression techniques
 - » Their use requires care
 - » Adapted to reduced data sets or specific studies
 - » Float to integer method: simple and fast technique (8 bits per sample)
 - » Wavelet: more powerful technique (4 bps or less) but less straightforward (More details in S. Klimenko talk)